CONFIDENTIAL

.

•

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2011/2012

COURSE NAME	:	FLIGHT MECHANICS
COURSE CODE	:	BDU 20603
PROGRAMME	:	BACHELOR OF AERONAUTICAL ENGINEERING TECHNOLOGY WITH HONOURS
EXAMINATION DATE	:	JUNE 2012
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER FOUR (4) OUT OF FIVE (5) QUESTIONS.

THIS PAPER CONSISTS OF FIVE (5) PRINTED PAGES

CONFIDENTIAL

Answer four (4) out of five (5) questions.

Q1 An airplane weighing 100,000 N is powered by a jet engine producing 20,000 N of thrust under sea level standard conditions. The wing area S is $25m^2$. The maximum lift coefficient $C_{Lmax} = 1.5$ and the polar drag coefficient C_D is given by $C_D = 0.016 + 0.064 C_L^2$.

Air properties at sea level and at an altitude 10 km are given respectively as below:

At sea level (SL) are : Pressure $p_{SL} = 1.01325 \ 10^5 \ \text{N/m}^2$, Temperature $T_{SL} = 288.15^0 \ \text{K}$, Air density $\rho_{SL} = 1.225 \ \text{kg/m}^3$ Air viscosity $\mu_{SL} = 1.7894 \ 10^{-5} \ \frac{\text{kg}}{\text{s. m}}$

At the altitude 10 km

Pressure ratio
$$\frac{\mathbf{p}}{\mathbf{p}_{SL}} = 0.26153$$

Temperature T = 223.252° K
Air density ratio $\frac{\mathbf{p}}{\mathbf{p}_{SL}} = 0.33756$
Viscosity ratio $\frac{\mu}{\mu_{SL}} = 0.81461$

Calculate :

(i) Stalling speed at sea level and at 10 km altitude,

(ii)
$$\left(\frac{\mathbf{C}_{\mathbf{D}}}{\mathbf{C}_{\mathbf{L}}}\right)_{\min}$$
 and $\left(\frac{\mathbf{C}_{\mathbf{D}}}{\mathbf{C}_{\mathbf{L}}^{3/2}}\right)_{\min}$

- (iii) The aircraft speed at the minimum drag V_{md} and the aircraft speed at the minimum power required V_{mp} at sea level flight.
- (iv) The minimum thrust required Tmin and the minimum power Pmin at sea level

(25 marks)

Q2 A piston-engine airplane has the following characteristics: Aircraft weight W = 11000 N, Wing area reference $S = 11.9 \text{ m}^2$ Lift coefficient C_L as function angle of attack α : $C_L(\alpha) = 0.098 (\alpha - \alpha_0)$ With the angle of attack at zero lift : $\alpha_0 = -3.8^0$ Drag coefficient C_D as function of lift coefficient is given as: $C_{\rm p} = 0.022 + 0.055 C_{\rm L}^2$

The maximum lift coefficient $C_{Lmax} = 1.4$. The aircraft engine BHP is 103 kW and propeller efficiency is 83 percent.

The atmospheric data at an altitude 3 km is given as :

Pressure ratio
$$\frac{\mathbf{p}}{\mathbf{p}_{SL}} = 0.69204$$

Temperature T = 268.659° K
Air density $\frac{\rho}{\rho_{SL}} = 0.74225$
Viscosity $\frac{\mu}{\mu_{SL}} = 0.94656$

The atmospheric conditions at sea level (SL) are :

$$p_{SL} = 1.01325 \ 10^5 \ N/m^2$$
, $T_{SL} = 288.15^{\circ} \ K$, $\rho_{SL} = 1.225 \ kg/m^3$
 $\mu_{SL} = 1.7894 \ 10^{-5} \ \frac{kg}{s \ m}$

The aircraft flies in level flight and at an altitude of 3 km. Determine the following flight performance: of that aircraft in terms :

- (i) Aircraft Stall speed V_{stall}
- (ii) The maximum speed in level flight V_{max}
- (iii) The minimum speed in level flight V_{min}
- (iv) The aircraft speed at the minimum power required
- (v) The angle of attack at that minimum power required.

(25 marks)

- Q3 An airplane weighing 180000N has a wing area of 45 m² and drag polar given by $C_D = 0.017 + 0.05 C_L^2$. The air properties at sea level and at altitude 10 km respectively are given as below:
 - At sea level (SL) are :

$$p_{SL} = 1.01325 \ 10^5 \ N/m^2$$
, $T_{SL} = 288.15^{\circ} \ K$, $\rho_{SL} = 1.225 \ kg/m^3$
 $\mu_{SL} = 1.7894 \ 10^{-5} \ \frac{kg}{m^3}$

$$s_{\rm sL} = 1.7894 \ 10^{\circ} \ -\frac{0}{\rm sm}$$

- At an altitude 3 km is given as :

Pressure ratio $\frac{\mathbf{p}}{\mathbf{p}_{SL}} = 0.69204$ Temperature T = 268.659° K Air density $\frac{\mathbf{p}}{\mathbf{p}_{SL}} = 0.74225$

Viscosity
$$\frac{\mu}{\mu_{SL}} = 0.94656$$

Determine :

- (i). The thrust required and power required for a rate of climb of 2,000 m/min at a speed of 540 km/hour at 3 km altitude.
- (ii) The rate of climb at 400 km/hour at sea level if the trust available is 45000 N.

(25 marks)

Q4 An propeller driven airplane having aircraft weight $W = 88\,290$ N. The wing area S is 45 m². The drag polar is given by : $C_D = 0.022 + 0.05C_L^2$. Weight of fuel and oil = 15450 N, BSFC = 2.67 N/kW-hr. and propeller efficiency $\eta_p = 85\%$. The air properties at sea level is given as follows:

$$p_{SL} = 1.01325 \ 10^5 \ N/m^2$$
, $T_{SL} = 288.15^{\circ} \ K$, $\rho_{SL} = 1.225 \ kg/m^3$
 $\mu_{SL} = 1.7894 \ 10^{-5} \ \frac{kg}{s \ m}$

Determine :

- (i) The maximum range and endurance at sea level in a steady level flight at a constant angle of attack.
- (ii) The velocity at the beginning and the end of flight
- (iii) The power required at the beginning and the end of flight

(25 marks)

Q5 A jet airplane having a weight of 441 450 N and wing area of 110 m^2 has a tricycle type landing gear. The maximum lift coefficients C_{Lmax} with flaps is 2.7 and other data as given as follows :

The take-off speed $V_1 = 1.16 \text{ Vs}$ The transition speed $V_2 = 1.086 \text{ V}_1$ The lift coefficient C_L during ground run is 1.15 The drag polar with landing gear and flaps is $C_D = 0.044 + 0.05 C_L^2$ Thrust variation during take-off can be approximated as : $T = 128,500 - 0.0929 \text{ V}^2$, where V is the km/hour The gravitational acceleration $g = 9.81 \text{ m/s}^2$

Aircraft Take-off takes place from a level and dry concrete runway (μ =0.02) and at the sea level.

Determine :

(i) The ground run distance S_1 and the required time for ground run t_1

BDU 20603

•

.

4 • • • •

- (ii)
- The transition distance S_2 and the required time for the transition phase t_2 The climb distance to reach 15 m screen height and the required time taken (iii) for that purpose.

(25 marks)