CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

THIS QUESTION PAPER CONSISTS OF TWELVE (12) PAGES

CONFIDENTIAL

PART A

 \bar{t} $\hat{\mathcal{A}}$,

Q1 (a) Find and sketch the domain of $f(x, y) = \ln(4 - x^2 - 4y^2)$.

(5 marks)

(b) Given the function

$$
f(x, y) = \begin{cases} \frac{x - y}{x + y}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}
$$

- (i) Show that along the x-axis, $\lim_{(x,y)\to(0,0)} f(x,y) = 1$ and along the y-axis, $\lim_{(x,y)\to(0,0)} f(x,y) = -1$.
- (ii) Is the function $f(x, y)$ continuous at $(0, 0)$? Give your reason.

(6 marks)

- (c) A rectangular steel tank of length x, width y and height z is heated. If length x, width y and height z change from 10, 7 and 5 to 10.02, 6.97 and 5.01, respectively,
	- (i) Approximate the change in volume V by using the total differential.
	- (ii) Calculate the exact change in volume V .

(9 marks)

 ~ 100

Q2 (a) Given the following double integrals

 $\hat{\mathcal{S}}_t$

$$
\int\limits_{0}^{1}\int\limits_{x}^{1}e^{y^{2}}dydx
$$

- (i) Sketch the region of integration, R.
- (ii) Interchange the order of integration to $dx dy$, and subsequently evaluate the double integrals in terms of $dx dy$.

(8 marks)

(b) A solid G is bounded above by the upper hemisphere $x^2 + y^2 + z^2 = 9$, and bounded below by the cone $z = \sqrt{x^2 + y^2}$. If the solid has density $\delta(x, y, z) =$ \overline{v} z - $)=\frac{1}{x^2+y^2+z^2},$

> (i) By changing Cartesan coordinates to spherical coordinates, show that the density function:

$$
\delta(x, y, z) = \frac{z}{x^2 + y^2 + z^2} = \frac{\cos \phi}{\rho}
$$

(ii) By using the result in part (i), find the mass of the solid.

(12 marks)

 $\label{eq:2.1} \begin{split} \mathcal{L}_{\text{max}}(\mathbf{r}) = \mathcal{L}_{\text{max}}(\mathbf{r}) \$

PART B

 α \times $_4$

- Q3 (a) The position vector of a particle in the space is described by the parametic equations $x = e^{-t}$, $y = 2\cos 3t$ and $z = 2\sin 3t$.
	- (i) Find the velocity of the particle.
	- (ii) Find the acceleration of the particle.
	- (iii) Find the speed of the particle at $t = 0$.

(5 marks)

- (b) Given the vector-valued function $r(t) = 3\cos t\mathbf{i} + 3\sin t\mathbf{j} + 4t\mathbf{k}$.
	- (i) Find its unit tangent vector, $T(t)$.
	- (ii) Find its principal unit normal vector, $N(t)$.
	- (iii) Find its binomial vector, $B(t)$.
	- (iv) Find its curvature κ .

(15 marks)

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\$

Q4 (a) Given that $F(x, y, z) = (2xy + z^3)i + x^2j + 3xz^2k$.

 \sim

 $\hat{\vec{r}}$

- (i) Show that $F(x, y, z)$ is a conservative field.
- (ii) Find its potential function ϕ which satisfies $\nabla \phi = \mathbf{F}$.
- (iii) Subsequently, find the work done by force field $F(x, y, z)$ on a particle moves from point $(1,-2,1)$ to $(3,1,4)$.

(10 marks)

(b) Verify the Green's theorem for line integral $\oint_C -2ydx +3xdy$, where C is the

close path defined by the semicircle, as shown in FIGIJRES Q4. (*Note*: $\cos 2x = 2\cos^2 x - 1$, $\cos 2x = 1 - 2\sin^2 x$)

(10 marks)

Q5 (a) Given that $w = e^{xy} + e^{-xy}$. Show that

 ϵ) ϵ

$$
\frac{\partial^2 w}{\partial x^2} + 2 \frac{\partial^2 w}{\partial x \partial y} + \frac{\partial^2 w}{\partial y^2} = (x + y)^2 w + 2(e^{xy} - e^{-xy})
$$
\n(7 marks)

(b) Evaluate the surface integral

$$
\iint\limits_{S} xydS
$$

where S is part of the plane $x + y + z = 1$ which lies in the first octant.

(7 marks)

(c) By using double integrals, find the surface area of the portion of the surface $2x + 3y + z = 12$ that lies above the region $R = \{(x, y) | 0 \le x \le 1, 0 \le y \le 3\}$.

(6 marks)

Q6 (a) Evaluate

 $\mathcal{F}_{\mathcal{A}}$

 $\bar{\beta}$

$$
\int\limits_C xyzdx + (2x + y)dy
$$

where C is part of the parabola $y = x^2$ from $(-1,1)$ to $(2,4)$.

(6 marks)

- (b) By using Gauss's Theorem, evaluate $\iint \mathbf{F} \cdot \mathbf{n} dS$ where $F(x, y, z) = x\mathbf{i} + x^2y\mathbf{j} + y^2z\mathbf{k}$ and σ is the surface enclosed by cylinder $x^{2} + y^{2} = 4$ lying in the first octant, and between plane $z = 0$ and $z = 4$. (7 marks)
- (c) Find the volume of the solid bounded by paraboloid $z = x^2 + y^2$, below by xyplane and the side by cylinder $x^2 + y^2 = 9$.

(7 marks)

END OF QUESTION -

BDA 24003

 $\frac{1}{\epsilon}$

FINAL EXAMINATION

FORMULAE

Total Differential

For function $w = f(x, y, z)$, the total differential of w, dw is given by:

$$
dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial z} dz
$$

Implicit Differentiation

Suppose that z is given implicitly as a function $z = f(x, y)$ by an equation of the form $F(x, y, z) = 0$, where $F(x, y, f(x, y)) = 0$ for all (x, y) in the domain of f, hence,

$$
\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}
$$

Extreme of Function with Two Variables

 $D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$ a. If $D > 0$ and $f_{xx}(a,b) < 0$ (or $f_{yy}(a,b) < 0$) $f(x, y)$ has a local maximum value at (a, b)

b. If
$$
D > 0
$$
 and $f_{xx}(a,b) > 0$ (or $f_{yy}(a,b) > 0$)
 $f(x, y)$ has a local minimum value at (a, b)

$$
f(x, y)
$$
 has a local minimum value at (a, b, c) . If $D < 0$

$$
f(x, y)
$$
 has a saddle point at (a, b)

d. If $D=0$ The test is inconclusive.

Surface Area

Surface Area =
$$
\iint_{R} dS
$$

=
$$
\iint_{R} \sqrt{(f_x)^2 + (f_y)^2 + 1} dA
$$

Polar Coordinates: $x = r \cos \theta$ $y = r \sin \theta$ $x^2 + y^2 = r^2$ $\iint\limits_R f(x, y) dA = \iint\limits_R f(r, \theta) r dr d\theta$

Cylindrical Coordinates:

 $x = r \cos \theta$ $y = r \sin \theta$ $z = z$ $\iiint f(x, y, z)dV = \iiint f(r, \theta, z) r dz dr d\theta$

Spherical Coordinates:

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$ $\rho^2 = x^2 + y^2 + z^2$ where $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$ $\iiint_G f(x, y, z)dV = \iiint_G f(\rho, \phi, \theta)\rho^2 \sin \phi d\rho d\phi d\theta$

In 2-D: Lamina **Mass,** $m = \iint \delta(x, y) dA$, where $\delta(x, y)$ is a density of lamina.

Moment of Mass

a. About y-axis,
$$
M_y = \iint_R x \delta(x, y) dA
$$
,
b. About x-axis, $M_x = \iint_R y \delta(x, y) dA$,

Centre of Mass Non-Homogeneous Lamina:

$$
(\overline{x}, \overline{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)
$$

Centroid

Homogeneous Lamina:

$$
\overline{x} = \frac{1}{Area \text{ of } R} \iint_R x dA \qquad \text{and} \qquad \overline{y} = \frac{1}{Area \text{ of } R} \iint_R y dA
$$

Moment Inertia:

 \mathbf{r} \mathbf{r} \rightarrow γ

a.
$$
I_y = \iint_R x^2 \delta(x, y) dA
$$

\nb. $I_x = \iint_R y^2 \delta(x, y) dA$
\nc. $I_o = \iint_R (x^2 + y^2) \delta(x, y) dA$

In 3-D: Solid
Mass,
$$
m = \iiint_G \delta(x, y, z)dV
$$

If $\delta(x, y, z) = c$, where c is a constant, $m = \iiint_G dA$ is volume.

Moment of Mass

a. About *yz*-plane,
$$
M_{yz} = \iiint_G x \delta(x, y, z) dV
$$

\nb. About *xz*-plane, $M_{xz} = \iiint_G y \delta(x, y, z) dV$
\nc. About *xy*-plane, $M_{xy} = \iiint_G z \delta(x, y, z) dV$

Centre of Gravity

$$
(\overline{x}, \overline{y}, \overline{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)
$$

Moment Inertia

a. About x-axis,
$$
I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV
$$

\nb. About y-axis, $I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$
\nc. About z-axis, $I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$

Directional Derivative

 $D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$

Gradient of $\phi = \nabla \phi$

Let $F(x, y, z) = Mi + Nj + Pk$ is vector field, hence, The Divergence of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

 $\begin{array}{c} \mathcal{F}_{\mathcal{A}}^{\mathcal{A}}(\mathcal{A}) \end{array}$

The Curl of
$$
\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}
$$

Let C is smooth curve defined by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, hence,
The Unit Tangent Vector, $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{T}(t)\|}$
The Principal Unit Normal Vector, $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}(t)\|}$
The Binormal Vector, $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$
Curvature

$$
\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}
$$

Radius of Curvature

$$
\rho = \frac{1}{\kappa}
$$

Greens Theorem

$$
\oint_C Mdx + Ndy = \iint_{V} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA
$$

Gauss Theorem

$$
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_{V} \nabla \cdot \mathbf{F} dV
$$

Stoke's Theorem

$$
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_{V} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS
$$

Are Length
If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $t \in [a, b]$, hence, the arc length, $s = \int_{a}^{b} ||\mathbf{r}'(t)|| dt = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$
If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $t \in [a, b]$, hence, the arc length,
 $s = \int$