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PART A

Ql (a) Find and sketchthe domain of f(x,y\=ln( -x2 -4y').
(5 marks)

O) Giventhe function

f ,-y ,-
.f (x,v)=l;' (x'Y) * (o'o)

I O, (x,y)=(0,0)

(i) Show that along the x-axis, 
,,,ji9o,o,/(x,y)=l 

and along the y-a:<is,

t'''T*o''/(x'!)= -l '

(ii) Is the function /(r,y)continuoust at (0,0)? Give yourreason.

(6 marks)

(c) Arectangularsteeltankof lengthr,widthyandheightzisheated. If lengthr,

width .y and height z change from 10, 7 and 5 to 10.02, 6.97 and 5.01,

respectively,

(i) Approximate the change in volume Zby using the total differential.

(ii) Calculate the exact change in volume Z.

(9 marks)
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Q2 (a) Given the following double integrals

ll

il"" ara'
0.r

(i) Sketch the region of integration, R.

(ii) Interchange the order of integration to dxdy , and subsequently

evaluate the double integrals in terms of dxdy .

(8 marks)

(b) A solid G is bounded above by the upper hemisphere *' + y' + 22 =9, and

bounded below by the cone z = Jt' + y'

If the solid has density 6(x, y, z) = 

- 

z 

- 
-' xL +y'+2"

(D By changing Cartesan coordinates to spherical coordinates, show that

the density function:

e/ \ z 
-=cos/

O(x,y,z)=--\",J,-' Xr+yr+ZZ p

(ii) By using the result in part (i), find the mass of the solid.

(12 marks)



BDA 24003

PART B

Q3 (a) The position vector of a particle in the space is described by the parametic

equations x = e-' ,l = 2cos3t and z = 2sin3/ .

(i) Find the velocity of the particle.

(ii) Find the acceleration of the particle.

(iii) Find the speed of the particle at t =0.
(5 marks)

(b) Given the vector-valued function r(t) = 3 cos ti + 3 sin rj + 4rk .

(i) Find its unit tangent vector, T(/).

(iD Find its principal unit normal vector, N(r).

(iiD Find its binomial vector, B(/).

(iv) Find its curvature r.
(15 marks)
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Q4 (a) Giventhat F(x,y,z)=(2ry+zt1i+x'i+3xz'k.

(i) Show that F(r,y,z)is aconservative field.

(ii) Find its potential function / which satisfies Y i =F .

(iii) Subsequently, find the work done by force field F(x,y,z)on a particle

moves from point (1,-2,1)to (3,1,4).

(10 marks)

O) Verifu the Green's theorem for line integral {+ry*+Zxdy, wherc C is the
C

close path defined by the semicircle, as shown in FIGIJRES Q4.

(Note: cos2r = 2cos2 x-1, cos2x = l-2sin2 x)

(10 marks)
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Q5 (a) Given that w - sv as-tv. Show that

02w.nO', .O2w , .;,? 2i 'J a"-'t -(x+ y)'w+2(ery -e-ry)Ax' AxAy Ay'

(7 marks)

(b) Evaluate the surface integral

IIoffi
s

where S is part ofthe plane x + y + z = I which lies in the first octant.

(7 marks)

(c) By using double integrals, find the surface area of the portion of the surface

2x +3y + z =l2thatlies above the region R = {(x,.y) | 0 < x < 1,0 < y <3\ .

(6 marks)
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Q6 (a) Evaluate

lwa*Qx+y)dy
C

where C is part of the parabola ! = x2 from (-l,l)to (2,4).

(6 marks)

(b) By using Gauss's Theorem, evaluate lJr."aS where

F(x,y,z)=xi+ x2y1+y2zk and o is the surface .n.tlrra by cylinder

x' + y' = 4lying in the first octant, and between plane z =}and z = 4 .

(7 marks)

(c) Find the volume of the solid bounded by paraboloid z = x2 + y2, below by xy-

plane and the side by cylinder x2 + y' -9.
(7 marks)

- END Or QIIESTTON
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Total Differential
For function w = f (x,y,z), the total differential of w, dw is given by:

a*=fu**fun*fua,ax Ay- tu

Implicit Differentiation
Suppose tlre;t z is given implicitly as a function z = f (x,y) by an equation of the form

F (x, y, z) = 0, where F (x, y, f (x, y)) = 0 for all (x, y) in the domain off hence,

COURSE

Az F-

-=-i 
anoAx F-

Extrcme of Function with Two Variables
P = f -(a,b).f o@,b) - [fo@, b)12

If D>0 and f-(a,b)<0 (or fo@,b)<0)
f (x,y)has a local morimum value at (a,b)

If D>0 and f*(a,b)>0 (or fr(a,b)>O)
f (x,y)has a local minimum value at (a,b)
If D<O
f (x,y)has a saddle point at (a,b)
If D=0
The test is inconclusive.

Sur{ace Area

Surface Area

(-f,)'+(.fr)2 +ld,l

0z F,

-=--fuF,

d.

dS=ll
R

=IJ
R
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Polar Coordinates:
x=rcns9
Y = rsin9
x2 +y2 =72

l[ f <r,la= !! f {r,ilrdrdo

Cylindrical Coordinates :
x =rens9
! = rsin9
z=z

!!! f <*, r, 4dY = [![ f rr, e, rydzdrdo

Spherical Coordinates:
y= psin{cos9
y = psin{sin4
2 = pcos$

P2 =x2 +y2 +22

where 0<A< n and 0<0 <2x

[[! ft ,t,4dv = [!l r<o,o,qp2 sinsdpd4dl

In 2-D: Lamina
Mass, * = t! a{r,y)dr4,,wherc 6(x,y)is a density of lamina.

R

Moment of Mass

a- Abouty-axis, M, = ![ x5@, fi&a,
R

b. Aboutx-ar<iso M, = [l fi(*,Dd,a,
R

Centre of Mass
Non-Homogeneous Lamina:

(i,i)=(Yt,L)
\m m)

Centroid

Homogeneous Lamina:
1...r=+llxea and y-

Areaof n Jd Areaof *$'*

l0
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Moment Inertia:
a. t, = llx'a@,y)dA

R

b. r,=llf6@,y)dA
R

c. 1" = ![{*, + y2)6(x,y)&4
R

In 3-D: Solid

Mrss, *=!l!aO,y,z)dv
G

If 5(x, y, z) = c,where c is a constant, rn = Iff *is volume.
G

Moment of Mess

a. Aboutyz-plane, M r= ffJra(x, y,z)dV
G

b. About xz-plane, M o = l!! tA@,t,2)dV
G

c. Aboutry-plane, Mo = t![ z6@,y,2)dV
G

Centre of Grevity
(u- M- M-)

\X,lrZ) =l 
-,-r- 

|\m m m)

Moment Inertia
a. Aboutx-anis, r, = II[<r, + 22151x,y,2)dV

G

b. Abouty-a,xis, /, =lljfr' +z'161x,y,2)dV
G

c. About z-a:<is, t, = !l!f*, + yr161x,y,z)dV
G

Directional Derivative
D,f(x,y)=(.f,i+ frD.a

Gradient of Q =Y 6

Let F(x,y, z) = Iufr+ i/j + Pk is vector field, hence,

The Divergence of F = VJ =%*!*!Ax Ay Az

ll
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Let C is smooth curve defined by r(/) = x(r)i + y(t)i+ z(t)k, hence,

The Unit Tangent Vector, T(r; = I
llr(r) ll

The Principal Unit Normal Vector, N(r) = #llr(r) ll

The Binormel Vector, B(t; = T(t)x N(r)

Curvature

K = 
llr(t) ll

ll r (t) ll

Radius of Curvature
Ip--
K

Green Theorem /aN aM\..6u*+N&=ttl+-+ldAa -i\cr ay)

Gauss Theorem

lJn."as = lllo .FdY
SG

Stoke's Theorem

{r-a, =ljto'F).ndS
CS

Arc Length 
b b

Ifr(r)=x(')i+y(t)!,tefa,b|,hence,thearclength''=J||r'(')||a,=['Ma,

If r(r) = x(t)i+ y(t)!+ z(t)lr,t ela,bl, hence, the arc t"ogtn,
bb

"=Jllr(r)ll 
a,=!@a,

t2




