CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

COURSE NAME	: CHEMISTRY	Z
COURSE MAINE	, UIL/IIIDIN	r.

COURSE CODE : DAS 12203 / DSK 1913

: 1 DAM 2 DAM 3 DAM / DAL / DDT / DFT

EXAMINATION DATE

DURATION

PROGRAMME

INSTRUCTIONS

: $2\frac{1}{2}$ HOURS

: OCTOBER 2012

: ANSWER ALL QUESTIONS IN PART A AND TWO (2) QUESTIONS IN PART B

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

PART A

÷.

Q1 a) A voltaic cell utilizes the reaction below:

 $3Ce^{4+}(aq) + Cr(s) \rightarrow 3Ce^{3+}(aq) + Cr^{3+}(aq)$

- i) What is the emf, E_{cell}° of this cell under standard conditions?
- ii) What is the emf of this cell when $[Ce^{4+}] = 3.0$ M, $[Ce^{3+}] = 0.10$ M and $[Cr^{3+}] = 0.01$ M?

$$(E_{Ce^{4+}/Ce^{3+}}^{\circ} = +1.61 \text{ V}, E_{Cr^{3+}/Cr}^{\circ} = -0.74 \text{ V})$$

(10 marks)

- b) Metallic magnesium can be made by electrolysis of molten MgCl₂.
 - i) Write the half-cell reduction equation occurs in the electrolysis.
 - ii) What mass of Mg is formed by passing a current of 4.55 A through molten MgCl₂ for 4.50 days?
 - iii) Using the same current, how many coulombs are required to plate a layer of Mg metal with dimension of 0.25 cm thick \times area 32 cm² from the molten MgCl₂? (*Hint: use the volume and density to calculate mass of Mg*).

(Relative Atomic Mass, Mg = 24.3, Cl = 35.5, 1F = 96500 C, $d_{Mg} = 1.74 \text{ g/cm}^3$)

(15 marks)

- Q2 a) At 25 °C, K_w has the value of $1.00 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$. Calculate the pH at 25 °C for
 - i) $0.150 \text{ mol } \text{L}^{-1}$ solution of sodium hydroxide,
 - ii) A solution which is formed when 35.0 mL of 0.150 mol L^{-1} of sodium hydroxide is mixed with 40.0 mL of 0.120 mol L^{-1} of hydrochloric acid.

(15 marks)

DAS 12203 / DSK 1913

- b) In a 0.150 M solution of a weak acid, HX at 25 °C, 1.80% of the acid molecules are dissociated into ions.
 - i) Write an expression of K_a for the acid, HX.
 - ii) Calculate the value of K_a for the acid, HX at this temperature and state its units.

(10 marks)

PART B

Q3 a) The equation below represents degradation of glucose, $C_6H_{12}O_6$ to carbon dioxide, CO_2 and water, H_2O_5 ,

 $C_6H_{12}O_6 \quad + \quad 6O_2 \quad \rightarrow \quad 6CO_2 \quad + \quad 6H_2O$

If 856 g of $C_6H_{12}O_6$ is used in the experiment,

i) Calculate the molar mass of glucose.

ii) Find out the number of moles of $C_6H_{12}O_6$ present in 856 g of $C_6H_{12}O_6$.

iii) What is the mass of CO₂ produced?

(Relative Atomic Mass, H = 1, C = 12, O = 16)

(10 marks)

- b) A mixture of helium and oxygen are used in the "air" tanks of scuba divers to keep diving. For a particular dive, 12 L of O₂ at 25 °C and 1 atm, 46 L of He at 25 °C and 1.0 atm were both pumped into a 5.0 L tank.
 - i) Calculate the partial pressure of each gas.
 - ii) What is the total pressure in the tank at 25 °C?

 $(R = 0.0821 \text{ L.atm mol}^{-1}.\text{K}^{-1})$

(15 marks)

DAS 12203 / DSK 1913

Q4 a) i) What do Groups IIIA and IIIB have in common? How are they different?
ii) With reference to quantum numbers, explain why the 4*f* sublevel can hold a maximum of 14 electrons.

(12 marks)

- b) i) Why chlorine, Cl is more electronegative than hydrogen, H.
 - ii) What is the trend of ionization energy (IE) when moving down the group in the periodic table.
 - iii) Which of the elements exhibit the highest electron affinity, group IA or VIIA. Give your reasons?

(Atomic number, Z: Cl = 17, H = 1)

۰.

(13 marks)

Q5 a) i) Draw the Lewis dot structures of NH_4^+ and H_2SO_4 . ii) Calculate formal charge on S atom in H_2SO_4 .

(Atomic number, Z: N = 7, H = 1, S = 16, O = 8)

(13 marks)

b) Determine the enthalpy change for the reaction of ethylene with F_2 :

 $C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$

Given the following informations:

$H_2(g) + F_2(g) \rightarrow 2HF(g)$	$\Delta H = -537 \text{ kJ}$
$C(s) + 2F_2(g) \rightarrow CF_4(g)$	$\Delta H = -680 \text{ kJ}$
$2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$	$\Delta H = +52.3 \text{ kJ}$

(12 marks)

Q6 a) The gas-phase decomposition of SO_2Cl_2 follows the equation below:

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ is first order in SO_2Cl_2 .

- i) At 600 K, the half-life for this process is 2.3×10^5 s. What is the rate constant at this temperature?
- ii) At 320 °C, the rate constant is 2.2×10^{-5} s⁻¹. What is the half-life at this temperature?

(10 marks)

b) At 295 K, the partial pressure of NH₃ and H₂S gases is 0.625 atm. Calculate K_c and K_p .

NH₄HS(s) \longrightarrow NH₃(g) + H₂S (g) (R = 0.0821 L.atm mol⁻¹.K⁻¹)

(10 marks)

c) Hydrogen reacts with nitrogen in the Haber process. The equation for the equilibrium is shown below :

 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$

Use Le Chatelier's principle to explain why an increase in the total pressure of this equilibrium results in an increase in the equilibrium yield of ammonia.

(5 marks)