UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAM
 SEMESTER II SESSION 2012/2013

COURSE NAME	$:$	SOLID MECHANICS II
COURSE CODE	$:$	BDA30303 / BDA3033 / BDA20903
PROGRAMME	$:$	BACHELOR IN MECHANICAL ENGINEERING WITH HONOURS
		JUNE 2013
EXAMINATION DATE	$:$	2 HOURS 30 MINUTES
DURATION	$:$	PART A: ANSWER TWO (2) QUESTIONS ONLY.
INSTRUCTION		PART B: ANSWER ALL QUESTIONS

PART A: ANSWER TWO (2) QUESTIONS ONLY.

Q1 (a) Referring to FIGURES Q1(a) and (b), determine the corresponding state of strain at $\theta=0^{\circ}$ resulting from the two states of strain shown using Mohr's circle and element diagram.
(8 marks)
(b) The bracket in FIGURE Q1(c) is made of steel for which $E_{\text {steel }}=200 \mathrm{GPa}$ and $v_{\text {steel }}=0.3$. Due to the loadings, the readings from the gauges at point A which is on the surface of the bracket are given as

$$
\varepsilon_{a}=600 \times 10^{-6}, \quad \varepsilon_{b}=450 \times 10^{-6}, \quad \varepsilon_{c}=-75 \times 10^{-6}
$$

Referring to the given measurements, determine:
(i) The principal strains at point A , and
(ii) The corresponding principal stresses at point A .
(17 marks)

Q2 (a) State THREE (3) different types of ends support and their boundary conditions involved.
(b) Define the Statically Indeterminate Beams.
(c) For the beam and loading shown in FIGURE Q2, determine:
(i) The reaction at A , and
(ii) The deflection at C .

Q3
(a) Define the effective-length, L_{e}.
(b) The effective-length factor, K is vary depends on the column end support. There are FOUR (4) different values of K. For each value of K, draw the diagram of the column with their different end supports.
(8 marks)
(c) The A-36 steel bar AB as shown in FIGURE Q3 has a square cross section. If it is pin-connected at its ends, determine the maximum allowable load P that can be applied to the frame. Use a factor of safety with respect to buckling of 2 . Use $E=$ 210 GPa and $\sigma_{y}=250 \mathrm{MPa}$.
(15 marks)

Q4 (a) A beam with length L and cross-sectional area A is loaded with vertical load, P at the middle of its length. For the following of the beam types, derive the strain energy of the beam:
(i) Cantilever beam, and
(ii) Simply-supported beam.

Let your answer in terms of L, A, P, Young's modulus (E) and moment of inertia (I).
(12 marks)
(b) Determine the reaction forces for a beam under loading as shown in FIGURE Q4 using strain energy method. The beam cross-sectional area, A is $1 \times 10^{5} \mathrm{~mm}^{2}$. Given $E=200 \mathrm{GPa}$ and $I=106 \times 10^{6} \mathrm{~mm}^{2}$.
(13 marks)

PART B : ANSWER ALL QUESTIONS

Q5 (a) Based on FIGURE Q5, derive and prove that the Hoop Stress, σ_{H} and the Radial Stress, σ_{R} can be expressed follow

$$
\begin{aligned}
& \sigma_{R}=\frac{a^{2} P_{a}-b^{2} P_{b}}{\left(b^{2}-a^{2}\right)}-\frac{a^{2} b^{2}\left(P_{a}-P_{b}\right)}{r^{2}\left(b^{2}-a^{2}\right)} \\
& \sigma_{H}=\frac{a^{2} P_{a}-b^{2} P_{b}}{\left(b^{2}-a^{2}\right)}+\frac{a^{2} b^{2}\left(P_{a}-P_{b}\right)}{r^{2}\left(b^{2}-a^{2}\right)}
\end{aligned}
$$

(b) A thick cylindrical shell with inner radius 10 cm and outer radius 16 cm is subjected to an internal pressure of 70 MPa . Find the maximum and minimum hoop stresses.
(a) Define the following theories:
(i) The Tresca theory, and
(ii) The von Mises theory.
(b) A horizontal shaft of 75 mm in diameter and 350 mm in length projects from a bearing as shown in FIGURE Q6. The vertical load of 10 kN , horizontal compression load of 12 kN and torque, $T \mathrm{Nm}$ are applied at the free end of the shaft. If the safe stress for the material is 145 MPa and assuming the Poisson's ratio is 0.3 . Determine the torque, T to which the shaft may be subjected using the following theories:
(i) The Tresca theory, and
(ii) The von Mises theory.

FIGURE 01

FINAL EXAMINATION

SEMESTER / SESSION	$:$ SEM II /20122013	PROGRAMME	$:$ BDD
COURSE NAME	: SOLID MECHANICS II	COURSE CODE	BDA30303/BDA303 3/BDA20903

FIGURE 02

FIGURE 03

FIGURE 05

FINAL EXAMINATION

SEMESTER / SESSION	$:$ SEM II /20122013	PROGRAMME	$:$ BDD
COURSE NAME	$:$ SOLID MECHANICS II	COURSE CODE	$:$ BDA30303/BDA303
3/BDA20903			

FIGURE 06

FINAL EXAMINATION

SEMESTER / SESSION $:$ SEM II / 20122013 COURSE NAME $:$ SOLID MECHANICS II	PROGRAMME $:$ BDD COURSE CODE $:$ BDA30303/BDA303 3/BDA20903
Formula: $\begin{aligned} & \varepsilon(\theta)=\varepsilon_{x} \cos ^{2} \theta+\varepsilon_{y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta \\ & \varepsilon_{x^{\prime}}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2}+\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \cos 2 \theta+\frac{\gamma_{x y}}{2} \sin 2 \theta \\ & \varepsilon_{y^{\prime}}=\frac{\varepsilon_{x}+\varepsilon_{y}}{2}-\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \cos 2 \theta-\frac{\gamma_{x y}}{2} \sin 2 \theta \\ & \frac{\gamma_{x^{\prime} y^{\prime}}}{2}=-\frac{\varepsilon_{x}-\varepsilon_{y}}{2} \sin 2 \theta+\frac{\gamma_{x y}}{2} \cos 2 \theta \\ & \tan 2 \theta_{p}=\frac{\gamma_{x y}}{\varepsilon_{x}-\varepsilon_{y}} \\ & \frac{d^{2} y}{d x^{2}}=\frac{M(x)}{E I} \\ & \frac{d V}{d x}=-w \\ & \frac{d M}{d x}=V \\ & U_{m}=\frac{1}{2} m v_{0}^{2} \\ & U=\frac{1}{2} P x \\ & U=\sum \frac{F_{i}^{2} L_{i}}{2 A_{i} E_{i}} \\ & U=\int \frac{M^{2}}{E I} d x \\ & y_{j}=\frac{\partial U}{\partial P_{j}}=\int \frac{M}{E I} \frac{\partial M}{\partial P_{j}} d x \end{aligned}$	

