

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2018/2019

COURSE NAME

ELECTRICAL & ELECTRONIC

TECHNOLOGY

COURSE CODE

BDU10803

:

PROGRAMME

BDC/BDM

EXAMINATION DATE

JUNE/JULY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

TERBONFIDENTIAL

CONFIDENTIAL

BDU10803

Q1	(a)	State th	he function of inductor and the SI unit of inductance.	(3 marks)
	(b)	Find L	req at the terminal a-b of the circuit in Figure Q1(b).	(5 marks)
	(c)		circuit in Figure Q1(c) , calculate the value of R that will make the energy in the capacitor the same as that stored in the inductor under dc conditions.	
				(7 marks)
	(d)	Determine the currents and voltages shown in Figure Q1(d) using Kirchhol		ff's Law.
				(10 marks)
Q2	(a)	(i)	Describe the differences between nodal analysis and mesh analysis.	(2 marks)
			Determine the voltages at the nodes in Figure Q2 (a)(ii) using noda	ıl
			analysis.	(9 marks)
	(b)	By applying superposition theorem, find v for the circuit given in Figure Q2(b) .		
				(4 marks)
	(c)	Consider the circuit in Figure Q2(c) and calculate;		
		(i)	Thevenin resistance, R_{Th} ,	(2 marks)
		(ii)	Thevenin voltage, V_{Th} ,	(5 marks)
		(iii)	value of R_L for maximum power transfer,	(1 mark)
		(iv)	maximum power, P_{max} .	(2 mark)

Q3 (a) Apply DeMorgan's theorem to each of the following expressions:

(i) $\overline{(A+B+C)D}$

(4 marks)

CONFIDENTIAL

BDU10803

(ii) $\overline{AB} + \overline{CD} + EF$

(4 marks)

- (b) Referring to the logic diagram in Figure Q3(b);
 - (i) Write Boolean expression;

(3 marks)

(ii) Develop a truth table from the Boolean expression in Q3(b)(i).

(4 marks)

(c) As part of an aircraft's functional monitoring system, a circuit is required to indicate the status of the landing gears prior to landing. A green LED display turns ON if all three gears are properly extended. A red LED display turns on if any of the gears fail to extend. Implement a control circuit to meet this requirement as shown in **Figure Q3(c)**.

(10 marks)

Q4 (a) Draw all types of magnetic circuits with their equivalent electric circuit.

(5 marks)

- (b) A coils of 200 turns is wound uniformly over a wooden ring having a mean circumference of 600 mm and a uniform cross sectional area of 500 mm2. If the current through the coil is 4 A, calculate:
 - (i) the magnetic field strength,

(2 marks)

(ii) the flux density, and

(2 marks)

(iii) the total flux

(2 marks)

(c) Explain **THREE** (3) classifications of DC motors with their applications.

(6 marks)

(d) Determine the total dissipated power in three identical coils that contains resistor 100Ω and inductance 42 mH when connected in a star to a 415 V, 50 Hz, 3-phase supply.

(8 marks)

END OF QUESTIONS –

3

TERBUKA

BDU10803

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: ELECTRICAL & ELECTRONIC

M

PROGRAMME CODE : BDC/BDM COURSE CODE : BDU 10803

TECHNOLOGY

a o-

10 mH -60 mH 1000 25 mH 20 mH

M

30 mH -1000

Figure Q1(b)

Figure Q1(c)

BDU10803

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: ELECTRICAL & ELECTRONIC

TECHNOLOGY

PROGRAMME CODE : BDC/BDM

COURSE CODE

: BDU 10803

Figure Q1(d)

Figure Q2(a)(ii)

Figure Q2(b)

CONFIDENTIAL

BDU10803

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: ELECTRICAL & ELECTRONIC

TECHNOLOGY

PROGRAMME CODE: BDC/BDM

COURSE CODE

: BDU 10803

Figure Q2(c)

Figure Q3(b)

Figure Q3(c)