

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER 2 SESSION 2018/2019

COURSE NAME

ENGINEERING MATHEMATICS I

COURSE CODE

BDA 14003

PROGRAMME CODE :

BDD

EXAMINATION DATE :

JUNE/JULY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

TERBUKA

- Q1 (a) Solve the domain and range of the following functions:
 - (i) $f(x) = \frac{2}{\sqrt{9-x^2}}$

(5 marks)

(ii) $g(x) = \frac{50x}{x^2 - 3x - 4}$

(5 marks)

- (b) Examine the limit for the functions of:
 - (i) $\lim_{x \to 0} \frac{\frac{1+x}{2} \frac{1}{2}}{x}$

(5 marks)

(ii) $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$

(5 marks)

Q2 (a) Solve this function $f(x) = (1 + x^5 \cot x)^{-8}$ using the Chain Rule

(4 marks)

(b) Solve the derivative $cos(x^2 + 2y) + xe^{y^2} = 1$.

(8 marks)

- (c) The radius, r of a spherical balloon at time, t seconds is given by $r = t^2 + t$. Find the:
 - (i) volume of the spherical balloon, v

(4 marks)

(ii) rate of change of the volume at t = 4 seconds

(4 marks)

Q3 (a) Identify the suitable method for the integration of $\int \frac{4x}{(1+x)^4} dx$

(6 marks)

(b) Solve the integrals of $\int \sin x \ln(\cos x) dx$

(6 marks)

CONFIDENTIAL

BDA 14003

- (c) By using the integration of partial fraction, prove that $\int_0^2 \frac{x^3 x}{x^2 + 5} dx = 2 + \ln\left(\frac{5}{9}\right)^3$ (8 marks)
- Q4 (a) Find the arc length of the graph of $y = \frac{x^2}{2} \frac{\ln x}{4}$ on the interval [2,4] (6 marks)
 - (b) Solve the surface area of the solid obtained by rotating $y = \sqrt{9 x^2}$ at $-2 \le x \le 2$ about the x-axis (6 marks)
 - (c) Examine the volume of the solid generated when the region bounded by the curves $x = y^2$ and y = x is rotated through 270° about the x-axis. (8 marks)
- Q5 (a) Find the composite functions of $(g \circ g)(x)$ and $(f \circ f)(x)$ with its domain of $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$ (8 marks)
 - (b) Solve the value of k if f(x) is continuous at every x, $f = \begin{cases} 9x 2 & x \le 1 \\ kx^2 1 & x > 1 \end{cases}$ (6 marks)
 - (c) Use L'Hospital's Rule to examine the limit of $\lim_{x\to\infty} \frac{4x^3 6x^2 + 1}{2x^3 10x + 3}$ (6 marks)
- Q6 (a) Find the integral $\int \tan^7 x \sec^3 x dx$ (6 marks)
 - (b) Solve the integral $\int \frac{dx}{\sqrt{5-4x-x^2}}$ by using trigonometry substitution method (8 marks)
 - (c) Solve the area of the region that is enclosed between $y = x^2$ and y = x + 6 (6 marks)

-END OF QUESTION-

CONFIDENTIAL

TERBUKA