

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION **SEMESTER 2 SESSION 2018/2019**

**COURSE NAME** 

: ENGINEERING MATHEMATICS II

COURSE CODE

: BDA 14103

**PROGRAMME** 

: BDD

EXAMINATION DATE : JUNE / JULY 2019

**DURATION** 

: 3 HOURS

INSTRUCTION

: PART A: ANSWER ALL

QUESTIONS.

PART B: ANSWER THREE (3)

OUESTIONS ONLY OUT OF FOUR.

THIS QUESTION PAPER CONSISTS OF EIGHT (7) PAGES

CONFIDENTIAL

TERBUKA

# CONFIDENTIAL PART A

Q1 Let f(x) be a function of period  $2\pi$  such that

$$f(x) = \begin{cases} x, & 0 < x < \pi \\ \pi, & \pi < x < 2\pi \end{cases}$$

(a) Sketch the graph of f(x) in the interval  $-2\pi < x < 2\pi$ 

(2 marks)

(b) Prove that the Fourier series for f(x) in the interval  $0 < x < 2\pi$  is:

$$\frac{3\pi}{4} - \frac{2}{\pi} \left[ \cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] - \left[ \sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \cdots \right]$$
(12 marks)

(c) By giving an appropriate value for x, demonstrate that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 (6 marks)

A 3 cm length silver bar with a constant cross section area 1 cm<sup>2</sup> (density 10 g/cm<sup>3</sup>, thermal conductivity 1.5 cal/(cm sec°C), specific heat 0.075 cal/(g °C), is perfectly insulated laterally, with ends kept at temperature 0°C and initial uniform temperature is f(x) = 25 °C. The heat equation is:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \frac{\partial u}{\partial t}$$

(a) By using the method of separation of variable, and applying the boundary condition, prove that

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{3} e^{-\frac{2n^2 \pi^2 t}{9}}$$

where  $b_n$  is an arbitrary constant.

(14 marks)

(b) By applying the initial condition, find the value of  $b_n$ .

(6 marks)

#### PART B

Q3 (a) Sketch the graph and express the following function in term of unit step functions.

$$f(t) = \begin{cases} 0, & 0 \le t < 1\\ (t-1), & 1 \le t < 2\\ 1, & t \ge 2 \end{cases}$$

(5 marks)

(b) By using the obtained relation in Q3 (a), solve the Laplace transforms of the function by using a second shift property.

(5 marks)

(c) Solve the inverse Laplace transforms of the following expressions.

$$\frac{s+1}{(s+3)^2+16}$$

(10 marks)

Q4 (a) Show that  $y = Ax^2 + \frac{B}{x}$ , is a general solution of the equation of

$$x^2 \frac{d^2 y}{dx^2} = 2y$$

Where, A and B are constants. Find the value of A and B if y = 2 and y' = 4 when x is equal to 1.

(8 marks)

(b) A population of a village grows proportion to its current population. The initial population is 10,000 and grows 9% per year. This can be modeled by:

$$\frac{dP}{dt} = 0.09 P$$

Determine

- (i) the equation to model the population.
- (ii) the population after 5 years.
- (iii) how long it will takes the population to double.

(12 marks)

Q5 (a) Obtain the general solution for the equation:

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$$

(5 marks)

(b) A forced system is given by:

$$my'' + ny' + ky = 10\cos(2x)$$

Solve for the steady state solution in the case where m = 1, n = 3, and k = 2

(10 marks)

(c) Find the particular solution of Q5(b) satisfying the conditions:

$$y(0) = 1, \quad y'(0) = 0$$

(5 marks)

Q6 (a) Determine whether the following differential equation are exact or inexact.

$$\frac{dy}{dx} = -\frac{2}{y} - \frac{3y}{2x}$$

(6 marks)

(b) If  $L\{f(t)\} = F(s)$ , prove the integration of transform that

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s) ds$$

(6 marks)

(c) Sketch the graph of periodic function

(i) 
$$f(t) = \begin{cases} t & 0 \le t < \pi, \\ 2\pi - t & \pi \le t \le 2\pi. \end{cases}$$

(ii) 
$$f(t) = \begin{cases} 2\sin t & 0 \le t < \pi, \\ 0 & \pi \le t \le 2\pi. \end{cases}$$

and state whether the graph are odd or even.

(8 marks)

- END OF QUESTION -

4

#### FINAL EXAMINATION

SEMESTER / SESSION

: SEM 2 /20182019

**PROGRAMME** 

: BDD

COURSE

: ENGINEERING

MATHEMATICS II

COURSE CODE

: BDA14103

#### **FORMULAS**

**First Order Differential Equation** 

| Type of ODEs                                                                                                                                                                                                                                                                                                                                                                                                           | General solution                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Linear ODEs:<br>y' + P(x)y = Q(x)                                                                                                                                                                                                                                                                                                                                                                                      | $y = e^{-\int P(x)dx} \left\{ \int e^{\int P(x)dx} Q(x)dx + C \right\}$                                             |
| Exact ODEs:<br>f(x,y)dx + g(x,y)dy = 0                                                                                                                                                                                                                                                                                                                                                                                 | $F(x,y) = \int f(x,y)dx$ $F(x,y) - \int \left\{ \frac{\partial F}{\partial y} - g(x,y) \right\} dy = C$             |
| Inexact ODEs:<br>$M(x, y)dx + N(x, y)dy = 0$ $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ Integrating factor;<br>$i(x) = e^{\int f(x)dx} \text{ where } f(x) = \frac{1}{N} \left( \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ $i(y) = e^{\int g(y)dy} \text{ where } g(y) = \frac{1}{M} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$ | $\int iM(x,y)dx - \int \left\{ \frac{\partial \left( \int iM(x,y)dx \right)}{\partial y} - iN(x,y) \right\} dy = C$ |

# Characteristic Equation and General Solution for Second Order Differential Equation

| Types of Roots                                   | General Solution                                         |
|--------------------------------------------------|----------------------------------------------------------|
| Real and Distinct Roots: $m_1$ and $m_2$         | $y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$                      |
| Real and Repeated Roots: $m_1 = m_2 = m$         | $y = c_1 e^{mx} + c_2 x e^{mx}$                          |
| Complex Conjugate Roots: $m = \alpha \pm i\beta$ | $y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$ |

#### **Method of Undetermined Coefficient**

| g(x)                                                  | $\mathcal{Y}_{p}$                   |
|-------------------------------------------------------|-------------------------------------|
| <b>Polynomial:</b> $P_n(x) = a_n x^n + + a_1 x + a_0$ | $x^r(A_nx^n++A_1x+A_0)$             |
| Exponential: $e^{ax}$                                 | $x^r(Ae^{ax})$                      |
| Sine or Cosine: $\cos \beta x$ or $\sin \beta x$      | $x^r (A\cos\beta x + B\sin\beta x)$ |

**Note:**  $r ext{ is } 0, 1, 2 \dots$  in such a way that there is no terms in  $y_p(x)$  has the similar term as in the  $y_c(x)$ .

**CONFIDENTIAL** 

TERBUKA

#### FINAL EXAMINATION

SEMESTER / SESSION

: SEM 2/20182019

**PROGRAMME** 

COURSE CODE : BDA14103

**COURSE** 

: ENGINEERING **MATHEMATICS II** 

#### Method of Variation of Parameters

The particular solution for y'' + ay' + by = r(x), is given by  $y(x) = u_1y_1 + u_2y_2$ , where;

$$u_1 = -\int \frac{y_2 r(x)}{W} dx$$
 and  $u_2 = \int \frac{y_1 r(x)}{W} dx$   $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$ 

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$$

## **Laplace Transform**

| Lapiace Transform                                                         |                                                         |
|---------------------------------------------------------------------------|---------------------------------------------------------|
| $\mathcal{L}\left\{f(t)\right\} = \int_{0}^{\infty} f(t)e^{-st}dt = F(s)$ |                                                         |
| f(t)                                                                      | F(s)                                                    |
| а                                                                         | $\frac{a}{s}$                                           |
| $t^n, n = 1, 2, 3,$                                                       | $\frac{a}{s}$ $\frac{n!}{s^{n+1}}$                      |
| $e^{at}$                                                                  | $\frac{1}{s-a}$                                         |
| sin at                                                                    | $\frac{a}{s^2 + a^2}$                                   |
| cos at                                                                    | $\frac{s}{s^2 + a^2}$                                   |
| sinh at                                                                   | $\frac{a}{s^2 - a^2}$                                   |
| cosh at                                                                   | $\frac{s}{s^2 - a^2}$ $F(s - a)$                        |
| $e^{at}f(t)$                                                              |                                                         |
| $t^{n} f(t), n = 1, 2, 3,$                                                | $\frac{(-1)^n \frac{d^n F(s)}{ds^n}}{\frac{e^{-as}}{}}$ |
| H(t-a)                                                                    | S                                                       |
| f(t-a)H(t-a)                                                              | $e^{-as}F(s)$                                           |
| $f(t)\delta(t-a)$                                                         | $e^{-as}f(a)$                                           |
| y(t)                                                                      | Y(s)                                                    |
| y'(t)                                                                     | sY(s)-y(0)                                              |
| y''(t)                                                                    | $s^2Y(s)-sy(0)-y'(0)$                                   |

#### FINAL EXAMINATION

SEMESTER / SESSION

: SEM 2 /20182019

PROGRAMME

: BDD

COURSE

: ENGINEERING MATHEMATICS II

COURSE CODE

: BDA14103

#### **Fourier Series**

Fourier series expansion of periodic function with period 2  $\pi$ 

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

## **Half Range Series**

$$a_0 = \frac{2}{L} \int_0^L f(x) dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$