

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2018/2019

COURSE NAME

: ENGINEERING MATHEMATICS III

COURSE CODE

: BDA 24003

PROGRAMME CODE : BDD

EXAMINATION DATE : JUNE/ JULY 2019

DURATION

: 3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

BDA 24003

Q1 (a) Given the vector-valued function $\mathbf{r}(t) = 2\cos t \mathbf{i} + 2\sin t \mathbf{j} + t \mathbf{k}$, for $0 \le t \le 2\pi$. Find the unit tangent vector $\mathbf{r}(t)$, principle unit normal vector $\mathbf{r}(t)$, binormal vector $\mathbf{r}(t)$ and curvature $\mathbf{r}(t)$ and $\mathbf{r}(t)$.

(10 marks)

- (b) A particle moves along a path which its position vector $\mathbf{r}(t)$ is given as a function of time t by $\mathbf{r}(t) = 3\cos 2t \, \mathbf{i} + 3\sin 2t \, \mathbf{j} + 6t^2 \, \mathbf{k}$.
 - (i) Determine the instantaneous velocity, speed and acceleration of the particle at time t.
 - (ii) Determine the time at which position vector is perpendicular to the acceleration vector.

(10 marks)

- Q2 (a) Given a vector field $F(x, y, z) = 7y^3z^2 \mathbf{i} 8x^2z^5 \mathbf{j} 3xy^4 \mathbf{k}$. Find
 - (i) the divergence of F.
 - (ii) the curl of F.

(4 marks)

(b) Evaluate $\int_C (3y+z)dx + yzdy + (z+2x)dz$ where C is line segment from the point (0, 2, 2) to (1, 3, 1).

(8 marks)

(c) Evaluate the integral $\oint_C \ln(1+y)dx - \frac{xy}{1+y}dy$ if C is the triangle with vertices (0, 0), (2, 0) and (0, 4) by using Green's Theorem.

(8 marks)

Q3 (a) Use double integrals to calculate the volume of the tetrahedron 3x + 2y + 4z = 12 in the first octant.

(5 marks)

(b) Analyze all relative maxima, relative minima and saddle points, if any for $f(x, y) = x^3 - 3xy + y^3$.

(8 marks)

CONFIDENTIAL

BDA 24003

- (c) Transform the integral $\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{4-y^2-x^2}} z^2 \sqrt{x^2 + y^2 + z^2} dz dy dx$ to spherical coordinates. Then calculate the triple integral. (7 marks)
- Q4 (a) Evaluate the integral $\iint_R xy dA$ over the region R enclosed by $y = \sqrt{x}$ and y = 6 x and y = 0.

(5 marks)

- (b) If $u = x^2 + y^2 + z^2$ and $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Use chain rule to show that $\frac{\partial u}{\partial \rho} = 2\rho$ (5 marks)
- (c) The total resistance R of two resistances R_1 and R_2 , connected in parallel, is $R = \frac{R_1 R_2}{R_1 + R_2}$. Suppose that R_1 and R_2 are measured to be 200 ohms and 400 ohms, respectively, with a maximum error of 2% in each. Use differentials to approximate the maximum percentage error in the calculated value of R. (10 marks)
- Q5 (a) Use double integral to find the area of lamina for the region bounded by the curve $y = \frac{1}{2}x^2$ and the line y = 2x. (5 marks)
 - (b) Given the solid that has density $\delta(x, y, z) = yz$ and is enclosed by $z = 1 y^2$, y = 0, z = 0, x = -1 and x = 1. Determine the
 - (i) mass of the solid
 - (ii) center of gravity of the solid.

(15 marks)

- Q6 (a) Given the force field $\mathbf{F}(x,y,z) = (z^3 \cos x + 2xy^2)\mathbf{i} + (2x^2y 2)\mathbf{j} + (3z^2 \sin x 4)\mathbf{k}$
 - (i) Prove that \mathbb{F} is conservative
 - (ii) By using formula $\nabla \emptyset = \mathbf{F}$, find a scalar potential \emptyset for \mathbf{F} .

(iii) Hence, compute the amount of work done against the force field F in moving an object from the point (0, -1, 1) to $(\frac{1}{2}\pi, 2, 2)$.

(10 marks)

(b) Use Gauss Theorem to find the flux of the vector field $F(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ across the surface of the region that is oriented outward and σ is the surface enclosed by the cylindrical $x^2 + y^2 = 4$, planes z = 0 and z = 3.

(10 marks)

-END OF QUESTIONS -

SEMESTER / SESSION : SEM II / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

FORMULA

Total Differential

For function z = f(x, y), the total differential of z, dz is given by:

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Relative Change

For function z = f(x, y), the relative change in z is given by:

$$\frac{dz}{z} = \frac{\partial z}{\partial x} \frac{dx}{z} + \frac{\partial z}{\partial y} \frac{dy}{z}$$

Implicit Differentiation

Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0, where F(x, y, f(x, y)) = 0 for all (x, y) in the domain of f, hence,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Extreme of Function with Two Variables

$$D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

a. If D > 0 and $f_{xx}(a,b) < 0$ (or $f_{yy}(a,b) < 0$)

f(x, y) has a local maximum value at (a, b)

- b. If D > 0 and $f_{xx}(a,b) > 0$ (or $f_{yy}(a,b) > 0$) f(x,y) has a local minimum value at (a,b)
- c. If D < 0f(x, y) has a saddle point at (a, b)
- d. If D = 0The test is inconclusive

Surface Area

Surface Area
$$= \iint_{R} dS$$
$$= \iint_{R} \sqrt{(f_{x})^{2} + (f_{y})^{2} + 1} dA$$

SEMESTER / SESSION : SEM II / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

Polar Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$x^{2} + y^{2} = r^{2}$$
where $0 \le \theta \le 2\pi$

$$\iint_{B} f(x, y) dA = \iint_{B} f(r, \theta) r dr d\theta$$

Cylindrical Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$
where $0 \le \theta \le 2\pi$

$$\iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r dz dr d\theta$$

Spherical Coordinates:

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

$$\rho^{2} = x^{2} + y^{2} + z^{2}$$
where $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$

$$\iiint_{G} f(x, y, z) dV = \iiint_{G} f(\rho, \phi, \theta) \rho^{2} \sin \phi d\rho d\phi d\theta$$

In 2-D: Lamina

Given that $\delta(x, y)$ is a density of lamina

Mass,
$$m = \iint_{R} \delta(x, y) dA$$
, where

Moment of Mass

a. About x-axis,
$$M_x = \iint_{\mathcal{D}} y \delta(x, y) dA$$

a. About x-axis,
$$M_x = \iint_R y \delta(x, y) dA$$

b. About y-axis, $M_y = \iint_R x \delta(x, y) dA$

SEMESTER / SESSION : SEM II / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE

: BDA 24003

Centre of Mass

Non-Homogeneous Lamina:

$$(\overline{x}, \overline{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$$

Centroid

Homogeneous Lamina:

$$\overline{x} = \frac{1}{Area \ of} \int_{R} \int_{R} x dA$$
 and $\overline{y} = \frac{1}{Area \ of} \int_{R} \int_{R} y dA$

Moment Inertia:

a.
$$I_{y} = \iint_{B} x^{2} \delta(x, y) dA$$

b.
$$I_x = \iint_R y^2 \delta(x, y) dA$$

c.
$$I_o = \iint_B (x^2 + y^2) \delta(x, y) dA$$

In 3-D: Solid

Given that $\delta(x, y, z)$ is a density of solid

Mass,
$$m = \iiint_G \delta(x, y, z) dV$$

If $\delta(x, y, z) = c$, where c is a constant, $m = \iiint dA$ is volume.

Moment of Mass

a. About yz-plane,
$$M_{yz} = \iiint_G x \delta(x, y, z) dV$$

b. About xz-plane,
$$M_{xz} = \iiint_G y \delta(x, y, z) dV$$

c. About xy-plane,
$$M_{xy} = \iiint_G z \delta(x, y, z) dV$$

Centre of Gravity

$$(\overline{x}, \overline{y}, \overline{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

SEMESTER / SESSION : SEM II / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

Moment Inertia

a. About x-axis,
$$I_x = \iiint_C (y^2 + z^2) \delta(x, y, z) dV$$

b. About y-axis,
$$I_y = \iiint_C (x^2 + z^2) \delta(x, y, z) dV$$

b. About y-axis,
$$I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$$

c. About z-axis, $I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$

Directional Derivative

$$D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$$

Del Operator

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Gradient of $\phi = \nabla \phi$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$, hence,

The **Divergence** of $\mathbf{F} = \nabla . \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

The Curl of $\mathbf{F} = \nabla \times \mathbf{F}$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$
$$= \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

CONFIDENTIAL

BDA 24003

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

Let C is smooth curve defined by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, hence,

The Unit Tangent Vector,
$$T(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

The Principal Unit Normal Vector,
$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

The **Binormal Vector**, $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

Curvature

$$\kappa = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||}$$

Radius of Curvature

$$\rho = \frac{1}{\kappa}$$

Green's Theorem

$$\iint\limits_{C} M dx + N dy = \iint\limits_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Gauss's Theorem

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{G} \nabla \cdot \mathbf{F} dV$$

Stoke's Theorem

$$\iint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS$$

Arc Length

If
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
, $t \in [a,b]$, hence, the arc length,

$$s = \int_{a}^{b} || \mathbf{r}'(t) || dt = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$