

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME

: BASIC MATHEMATICS

COURSE CODE : BBR 23603

PROGRAMME : 4 BBR, 3BBR

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER **FIVE (5)** QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

Q1 (a) Given $X = \{a, e, i, o, u\}$ and $Y = \{a, b, c, d, e\}$. Find Y - X.

(2 marks)

(b) Given

P = The set of whole numbers less than 5

Q = The set of even numbers greater than 3 but less than 9

R = The set of factors of 6

- (i) List the sets P, Q and R.
- (ii) Calculate $(P \cap Q) \cup (Q \cap R)$
- (iii) Draw conclusions of $(P \cap Q) \cup (Q \cap R)$

(10 marks)

(c) Given the Venn diagram in Figure Q1(c).

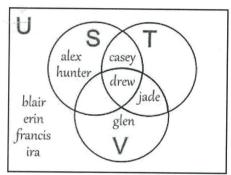


Figure Q1(c)

Find the relationship between the set $(S \cap T) \cup V$ and $(S \cap T) \cup V$. (8 marks)

Q2 (a) Find the solution of x which satisfy the following inequalities.

$$1 - \frac{7x - 1}{8} > \frac{3x - 2}{4}$$

(5 marks)

(b) Find the set values of x for which $\frac{x^2 - 5x + 4}{(2x + 3)} \ge 0$. Draw the conclusion of your answer.

(15 marks)

Q3 (a) Simplify the following expressions and justify your answer

(i)
$$\sqrt[3]{16y^3x^4} - \sqrt[3]{54y^3x^4}$$

(ii)
$$\left(\frac{(2xz^{-3})^4(x^{-2}z)^2}{(2xz^2)^3} \right)^5$$

(6 marks)

(b) Solve the following equations

(i)
$$\log(x) + \log(x - 1) = \log(8x - 12) - \log(2)$$
.

(ii)
$$\log_2(x+3) + \log_2(x-3) = 4$$
.

(8 marks)

(c) Calclulate

$$\frac{\log \sqrt{27} + \log 8 - \log \sqrt{1000}}{\log 12 - \log 10}$$

(4 marks)

Q4 (a) The coordinates of the points P and Q are (-4, 6) and (5, 3) respectively. If the point A(p, q) is equidistant from the point P and Q, justify that q=3(p+1)

(5 marks)

(b) Find the equation of the straight line that has

- (i) a gradient of -2 and passes through the point (6, 2)
- (ii) a gradient of $\frac{3}{4}$ and passes through the point (-7, 3)

(8 marks)

(b) Determine whether PQ is parallel or perpendicular to TU, given P(2, 19), Q(6, 9), T(0, -1) and U(-4, 9).

(7 marks)

Q5 State which quadrant and find the reference angle for (a)

- 114.55° (i)
- 227° 18' (ii)

(6 marks)

Solve for all values in the region of 0° and 360° : (b)

- (i) $\sin x = \sin 18^{\circ} 35'$
- $\cos y = -\cos 56^{\circ} 15'$ (ii)

(8 marks)

By using Table Q5, solve the trigonometric functions given. (c)

Table O5

1 able Q3			
Angle θ	$\sin \theta$	$\cos \theta$	an heta
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

- (i) (ii)
- $\sin 30^{\circ} + \cos 45^{\circ}$ $3 \cos 60^{\circ} 2 \sin 45^{\circ}$

(6 marks)

Q6 (a) Given three vectors, u = 3i + 5j - 4k, v = -2i + 3k and w = 4i - j + 2k.

- (i) Find v + 3w 2u and hence |v + 3w 2u|
- (ii) Find $u \cdot w$ and $u \times w$. Hence, determine the difference between $u \cdot w$ and $u \times w$.

(10 marks)

(b) Find the equation of a line that passes through P(2, 5, -3) and Q(1, -4, -2).

(5 marks)

(c) Find the equation of a plane containing P(1, 3, -1), Q(-1, -1, 2) and R(-2, 0, 4).

(5 marks)

Q7 (a) Simplify the following

- (i) i(4i)(-3i)
- (iii) $i^{101}(1-3i)$

(5 marks)

(b) If $z_1 = 1 + i$ and $z_2 = 1 + i$, find

- (i) z_2^2
- (ii) $\frac{z_2}{z_1}$

(5 marks)

- (b) Given $z_1 = 3 + 4i$ and $z_2 = 1 \sqrt{3}i$,
 - (i) Find the modulus and argument for z_1 and for z_2 in polar form expression.
 - (iii) Hence conclude the expression of z_1z_2 in polar form.

(10 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: BASIC MATHEMATICS

PROGRAMME: 3 BBR, 4BBR COURSE CODE: BBR 23603

FORMULA

Set

Intersection:

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Union:

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Cartesian product:

 $A \times B = \{(a,b) : (a \in A) \text{ and } (b \in B)\}$

Exponents, logarithms and radicals

Equivalence of exponent and logarithm:

 $x = b^n \iff \log_b x = n$

Logarithmic identities:

 $\log_b x^k = k \log_b x$

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(xy) = \log_b x + \log_b y$$

Coordinate Geometry

Slope of a line:

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Equation of a line: y = mx + c

The distance between two points P and Q is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The mid-point of the straight line joining two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ i

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2013/2014
COURSE NAME : BASIC MATHEMATICS

PROGRAMME: 3 BBR, 4BBR COURSE CODE: BBR 23603

Vector

For vectors $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ with any scalar λ , then

(1)
$$\lambda(\mathbf{a} \pm \mathbf{b}) = \lambda(a_1 \pm b_1)\underline{i} + \lambda(a_2 \pm b_2)\underline{j} + \lambda(a_3 \pm b_3)\underline{k}$$

(2) The length (or magnitude) for
$$a$$
 is $|a| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

(3) Scalar product of
$$\boldsymbol{a}$$
 and \boldsymbol{b} is $\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

(4) Vector product of a and b is

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\vec{i} - (a_1b_3 - a_3b_1)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

Complex Number

Imaginary number, i is defined as $i^2 = -1$ or $i = \sqrt{-1}$

If z = a + bi, then its conjugate is $\overline{z} = a - bi$

For $z_1 = a_1 + b_1 i$ and $z_2 = a_2 + b_2 i$, then

(1)
$$z_1 \pm z_2 = (a_1 + a_2) \pm (b_1 + b_2)i$$

(2)
$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + (a_1 b_2 + a_2 b_1) i + b_1 b_2 i^2 = a_1 a_2 - b_1 b_2 + (a_1 b_2 + a_2 b_1) i$$

(3)
$$\frac{1}{z_1} = \frac{1}{a_1 + b_1 i} = \frac{1}{a_1 + b_1 i} \left(\frac{a_1 - b_1 i}{a_1 - b_1 i} \right), \quad \frac{1}{z_2} = \frac{1}{a_2 + b_2 i} = \frac{1}{a_2 + b_2 i} \left(\frac{a_2 - b_2 i}{a_2 - b_2 i} \right)$$