

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME

COURSE CODE

: DAE 21203

PROGRAMME : 2 DAE

EXAMINATION DATE : MARCH 2013

DURATION : 2 ½ HOURS

INSTRUCTIONS

: ANSWER FOUR (4) QUESTIONS ONLY

: DIGITAL ELECTRONICS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

• • •

Q1	(a)	Perform the following arithmetic operation. Show all your steps:	
		 (i) 18₁₀-25₁₀ using 2's complement. (ii) 93_{BCD} + 15_{BCD}. (iii) Signed binary numbers: 11101101 + 00001100. Give answer in decimal number. 	
		(9 marks)	
	(b)	Convert 3B9 _{HEX} to base 2, 8 and 10 number systems. (5 marks)	
	(c)	Encode "A = $38/x$ " in ASCII code (excluding the quotes) using odd parity. The ASCII table is given in Table Q1(c).	
		(8 marks)	
	(d)	A computer has a word length of 8 bits (including sign bit). If TWO's complement is used to represent negative numbers, what range of integers can be stored in the computer?	
		(3 marks)	
Q2	(a)	 (i) Write the equations for DeMorgan's theorem. (ii) Use basic gates to illustrate the two DeMorgan's theorems (iii) Write the output expression for each gate. 	
		(6 marks)	
	(b)	A technician needs an AND gate to complete a design, but only NOR gates are available. Show how NOR gates can be used to implement an AND gate.	
		(2 marks)	
	(c)	Simplify F using Boolean algebra laws for the following function: $F = A\overline{B}C + ABC + (C + D)(\overline{D} + E)$	
		(4 marks)	
	(d)	Waveforms A, B and C of Figure Q2(d) are applied to a logic circuit. The output waveform, D, from the circuit is also shown in Figure Q2(d). Obtain the truth table and Boolean expression of the logic circuit. Simplify the expression for D and implement with NAND gates only.	

(13 marks)

Q3 (a) For the following function:

•

- (i) Simplify using a Karnaugh map and obtain a minimum SOP expression for *f*.
- (ii) Implement the simplified logic diagram using logic gates.

$$f(A, B, C, D) = \sum m (2,3,6,9) + d(10,11,12,13,14,15)$$

(9 marks)

- (b) A combinational circuit has 4 inputs (A, B, C, D) and 3 outputs (X, Y, Z).
 X, Y, Z represent a binary number whose value equals the number of 1's at the input. For example, if ABCD = 1011, XYZ = 011. Find the
 - (i) Obtain the truth table of the circuit.
 - (ii) Write the minterm expression for outputs X, Y, and Z.
 - (iii) Write the maxterm expression for outputs X, Y, and Z.
 - (iv) Simplify the output function for X, Y, and Z.

(16 marks)

- Q4 (a) From the truth table in Table Q4(a),
 - (i) Write the standard sum of product (SOP) expression for output P.
 - (ii) Write the standard product of sum (POS) expression for P
 - (iii) Use the K map to get the minimum sum of product (SOP) expression for P.
 - (iv) Implement the simplified expression of P with logic gates.

(11 marks)

- (b) For the logic circuit shown in Figure Q4(b)
 - (i) Construct the truth table
 - (ii) Write the output expression.

(5 marks)

- (c) Represent each function below as a sum of minterms:
 - (i) $F = \overline{AB} + \overline{AC} + A\overline{B} + \overline{BC}$
 - (ii) $F = \overline{X}\overline{Z} + \overline{W}\overline{X}\overline{Y} + \overline{W}\overline{X}Z$

(9 marks)

Q5. (a) A full adder can be implemented in many different ways. Figure Q5(a) shows how one may be constructed from 2 Half Adders. Construct a truth table for this arrangement and verify that it operates as a Full Adder.

(10 marks)

(b) Figure Q5(b) show a BCD adder circuit.

•

ι.

- (i) What are the THREE basic parts of this adder?
- (ii) Describe how the BCD adder circuit detects the need for a correction and executes it.
- (iii) Write the expression for X.
- (iv) Two numbers, A and B having values 9 and 5 respectively are feed into this BCD adder. Show the contents of $A_3A_2A_1A_0$, $B_3B_2B_1B_0$, $S_3S_2S_1S_0$, $\sum_3\sum_2\sum_1\sum_0$ and the value of X. Verify that the contents of the BCD sum and value of X is correct.

(15 marks)

Q6. (a) With the aid of diagrams, explain the function of the following devices:

- (i) A decoder
- (ii) An encoder
- (iii) A multiplexer

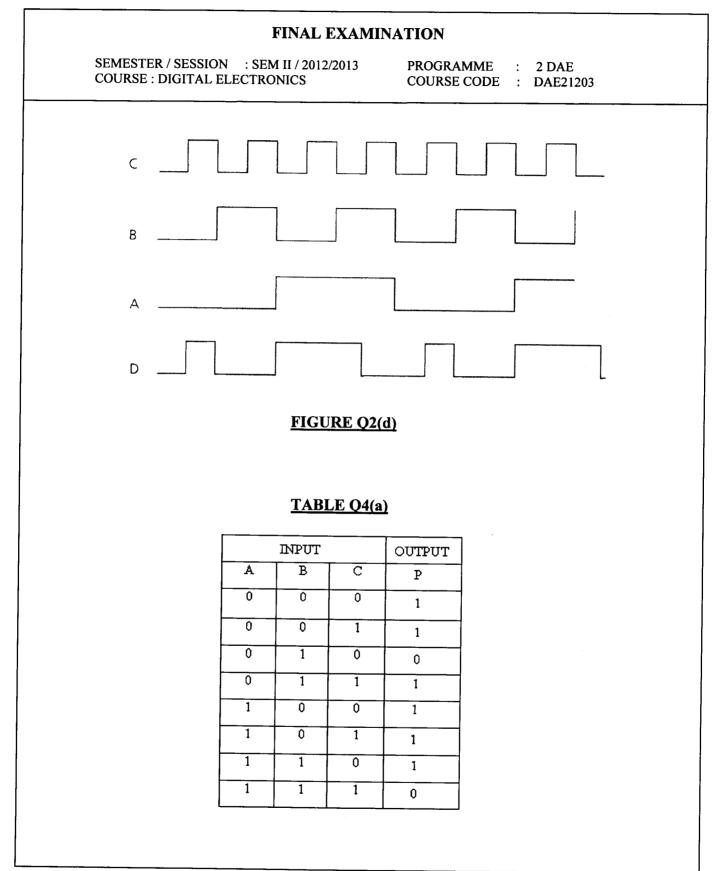
(9 marks)

- (b) For the circuit in Figure Q6(b),
 - (i) Construct the truth table
 - (ii) Write the expression for outputs \sum and Co in sum of minterms.
 - (iii) Use a 3 x 8 decoder with active Low output and appropriate logic gates to implement \sum and Co.

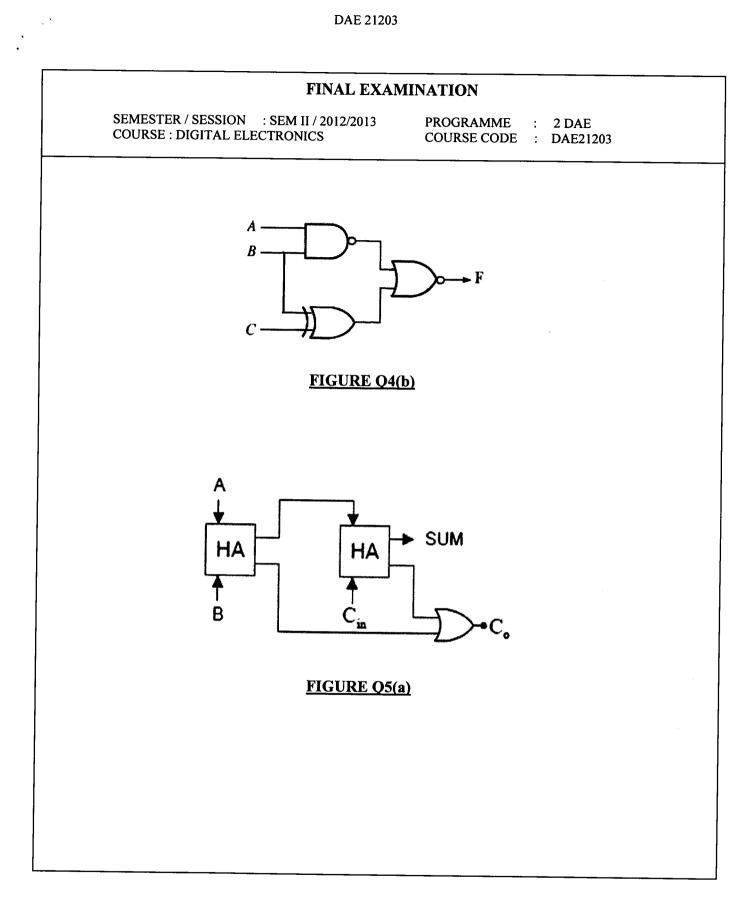
(11 marks)

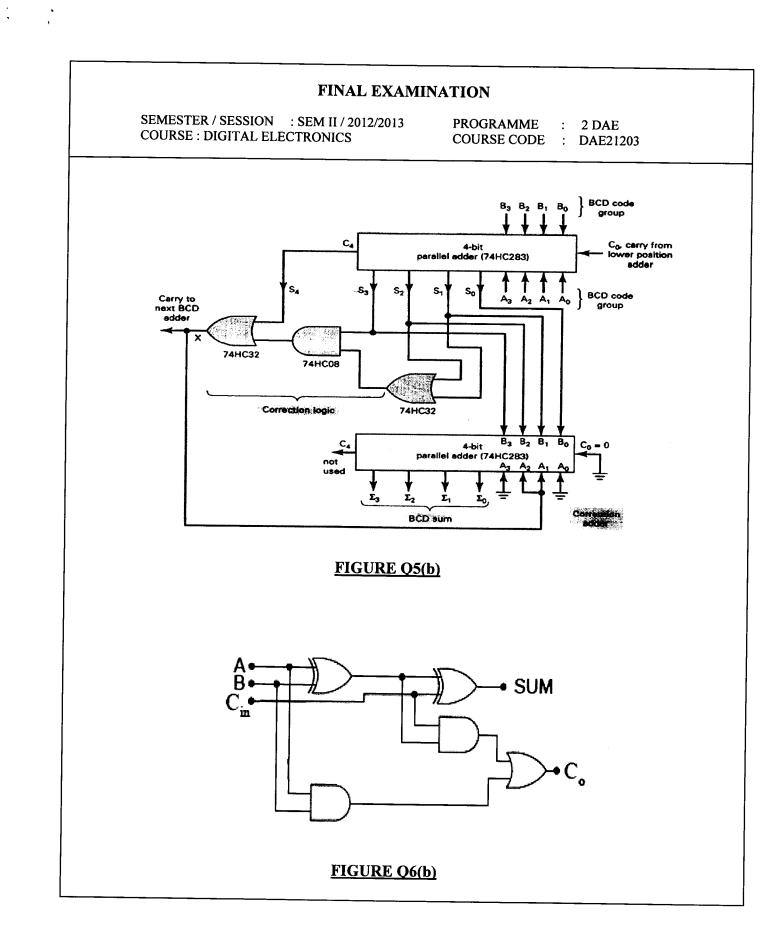
(c) Implement this circuit using a 8 x 1 multiplexer to produce the Boolean expression:

 $Z = A\overline{B}C + AB\overline{C} + BC$


(5 marks)

- END OF QUESTION -


											ľ	IP	A	L	E)	(A	M	IN	A]	ΓΙΟ	JN	1											
	EM COU													012	2/20)13							MI CO			:		DA AE		203	}		
	HEX		8	5	8	3	2	3	\$	5	3	8	6Å	8	8	9	8	t (2.7	a =	3 F	2 2	; ; ;	2	4	28	۴	AT .	78	2	P	Æ	Ŧ
111. 111. 111. 111. 111. 111. 111. 111	BINARY		000011		0100011	1100011	1001001	100011	0110011		0001011	1001011	01010	Itoloii	001101	101101					1100111		1010111	1110110	1110111	1111000	1001111	0101111	110111	1111100	101111	111110	
and a second	DEC	2	£ 8		Š.	3	8	5	8	9	<u></u>	8	8	5	ŝ	8	91		112	1	1	116	11	118	119	120	121	13	13	124	125	1 <u>7</u>	127
and the second	SYMBOL		·		c	بى	 							× -	-	a.							-							•			
an an Ale		1777	: ··					-	14 17 17 14]eik	-			1.1		-												N		- - -		- 8 1.	8
	HEX	ę	} ₹	F. 9	₹\$	÷ ;	₹ ;	\$	₽ C	;	₽. €	\$	\$ 9	;	≩ . €	} €	₽ <u></u>	9	3 7	8	53	X	ŝ	×	51	85	55	SA SA	ß	8	8	SE	£
GRAPHIC SYMBOLS	BINARY					1 mont												1010000	101001	1010010	100101	1010100	1010101	1010110	101011	1011000	1001101	1011010	101101	1011100	1011101	1011110	111101
RAPHIC	DFC	2	5 (¢	t - S	3 5	ŝ	8 5	6 8	7 5	: F	: F	2 7	t ¥	2 %	; F	e P	? 2	8	50	8	83	3	8	*	83	88	\$	8	16	5	£	¥	S .
6	SYMBOL	0	<	et	ء ز	, c	ם כ	ці. Ц	- c) 1	: -	• •		:	2	2	0	~	0	~	ø	-	D	۸ ۷	A	X	Y,	2 .	:	-	ر د م		1-
	нех	ន	7	33		PC	5 X		34	i 8	2	2 × 2	E.	N N		E E	3F	8	31	8	33	*	33	8	37	200 200	66	Y I	8	<u>ຼ</u>	<u>ج</u>	ı ت	
	BINARY	010000	1000010	0100010	0100011	0100100	0100101	010010	010011	0101000	0101001	0101010	101010	0101100		 		0000110		olitorio	01100110	0010100						0111010 3					011111
	DEC	32		 					8	0	1 0	2	0	5	0	6		0												8	10	3	10
		space								4	⇒	4	₩ 	4	4	¥	47	4	\$	8	5	22		X		8 -	15	к 9	£ 5	8 3	53	8	8
	SYMBOI	Ř		•								*	+	•	. I 			0	-	Ч	~	4	S	•		00	.	•	• \	/ 1	• <u>^</u>	<u>,</u>	A
RS	нех	8	10	8	03	8	8	8	60	8	8	0A	8	8	8	Э	8	9	11	12	9	₹	2	2	5	<u>×</u>	<u> </u>	<u> </u>	<u> </u>	2 9	3 =	3	
CONTROL CHARACTERS	BINARY	000000	100000	0100000	1100000	0010000	1010000	0110000	1110000	0001000	1001000	00101000	101000	0011000	1011000	00111000	1111000	0010000	1000100	0010010	1100100	0010100	1010100	0110100		0001100		001101	001100	1011100	0011100	111100	Version of the second second second
NTROL	DEC	0		2	m	4	Υ.	9	1	90	9	01	Ŧ	12	13	14	15	16	11	20	6	ล	7	3 8	5 2	4 ×			28	2			P Outpressants
cο	NAME	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	Ħ	Ŀ	VI	Ŧ	Ĕ.	20	SI	DLE	Ŋ	22	2	đ N	NAK			EW	SUB	ESC	Ł	S	RS	SI	


5

•

6

