CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

- ELECTRICAL PRINCIPLES II
- COURSE CODE : DAR 11103

:

- PROGRAMME : 1 DAR
- EXAMINATION DATE : MARCH 2013
- DURATION : 3 HOURS
- INSTRUCTION
- : ANSWER FIVE(5) QUESTIONS ONLY

THIS PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

Q1	(a)	For the network of Figure Q1(a):	
x		(i) Find the total impedance Z_T .	(4 marks)
		(ii) Calculate the voltage V_2 and the current I_L .	(4 marks)
		(iii) Find the power factor of the network.	(2 marks)
	(b)	For the network of Figure Q1(b):	
		(i) Find the currents I.	(4 marks)
		(ii) Find the voltage V_C .	(4 marks)
		(iii) Find the average power delivered to the network.	(2 marks)
Q2	(a)	For the circuits of Figure Q2(a), write the mesh equations for the network and determine the current through the $1k\Omega$ and $2k\Omega$ resistors.	
			(10 marks)
	(b)	Determine the nodal voltages V_1 and V_2 for the networks of Figure Q2(b)	(10 1)
			(10 marks)
Q3	(a) Find the Thévenin equivalent circuit for the portions of the networks of Figure Q3(a) external to the elements between points <i>a</i> and <i>b</i> .		gure Q3(a)
		•	(10 monto)

(10 marks)

(b) Find the load impedance Z_L for the networks of Figure Q3(b) for maximum power to the load, and find the maximum power to the load.

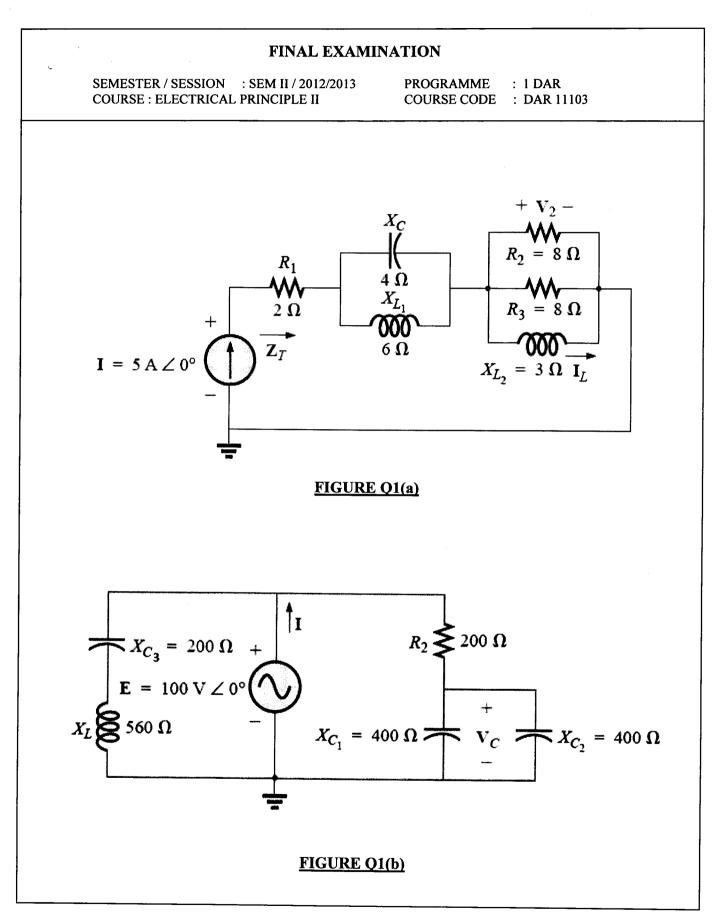
(10 marks)

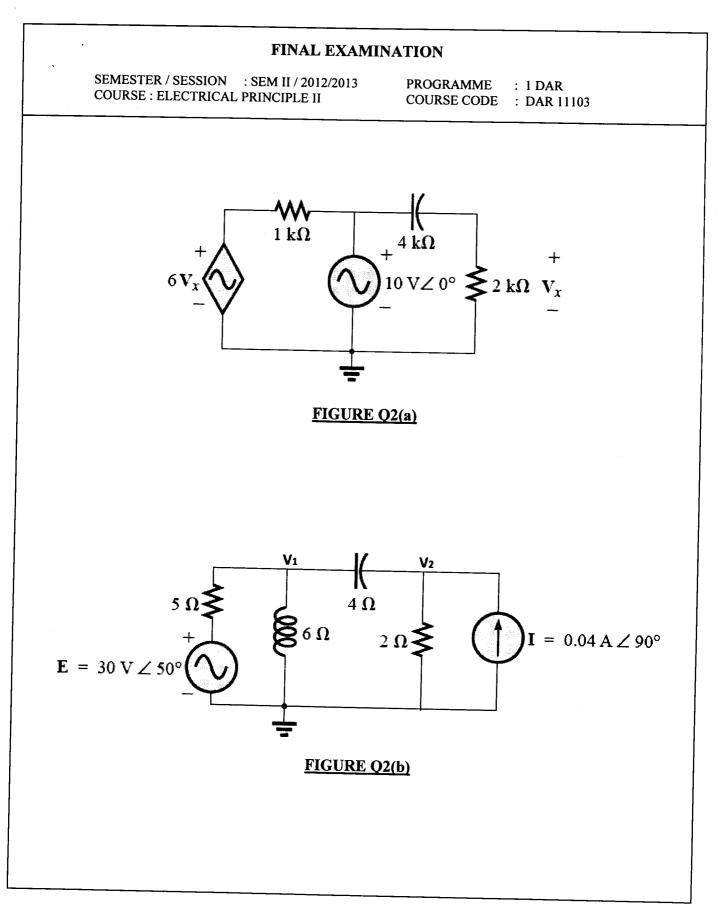
Q4	For the network of Figure Q4:		
х х	(a)	Find the average power delivered to each element.	(2 marks)
	(b)	Find the reactive power for each element.	(5 marks)
	(c)	Find the apparent power for each element.	(3 marks)
	(d)	Find P_T , Q_T , S_T , and Fp for the system.	(8 marks)
	(e)	Find I _{S.}	(2 marks)

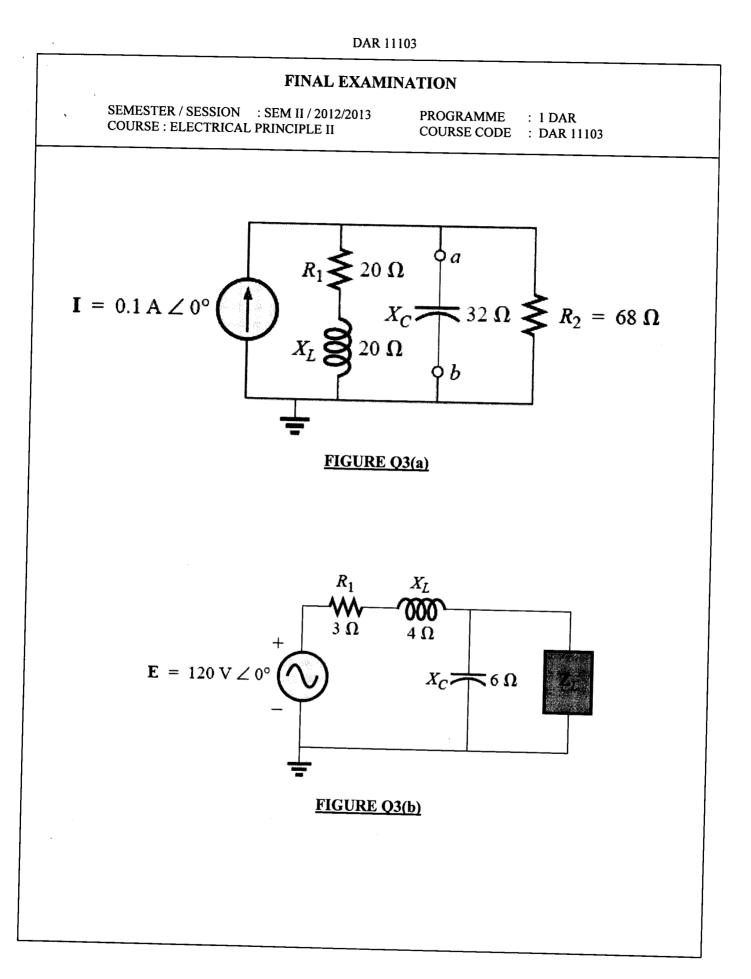
Q5	For the series circuit of Figure Q5:
Q 5	Tor the series circuit of righte Q5:

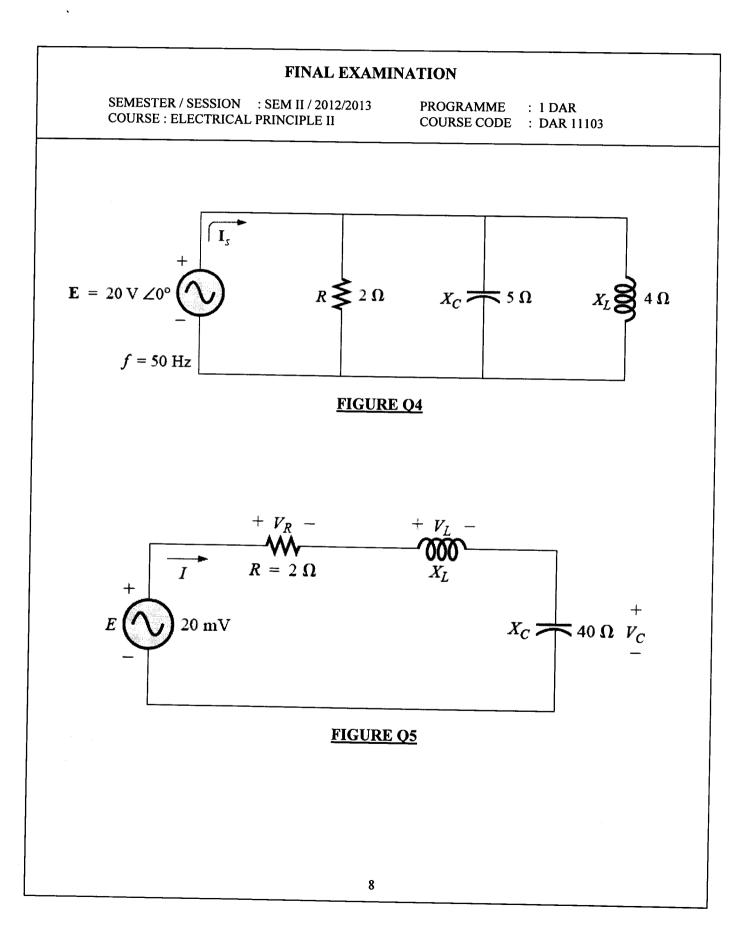
(a)	Find the value of X_L for resonance.	(2 marks)
(b)	Determine the magnitude of the current I at resonance.	(2 marks)
(c)	Find the voltages V_R , V_L , and V_C at resonance, and compare their magnit	udes. (6 marks)
(d)	Determine the quality factor of the circuit. Is it a high or low-Q circuit?	(2 marks)
(e)	If the resonant frequency is 5 kHz, determine the value of L and C.	(4 marks)
(f)	Find the bandwidth of the response if the resonant frequency is 5 kHz.	(2 marks)
(g)	What are the low and high cutoff frequencies?	(2 marks)

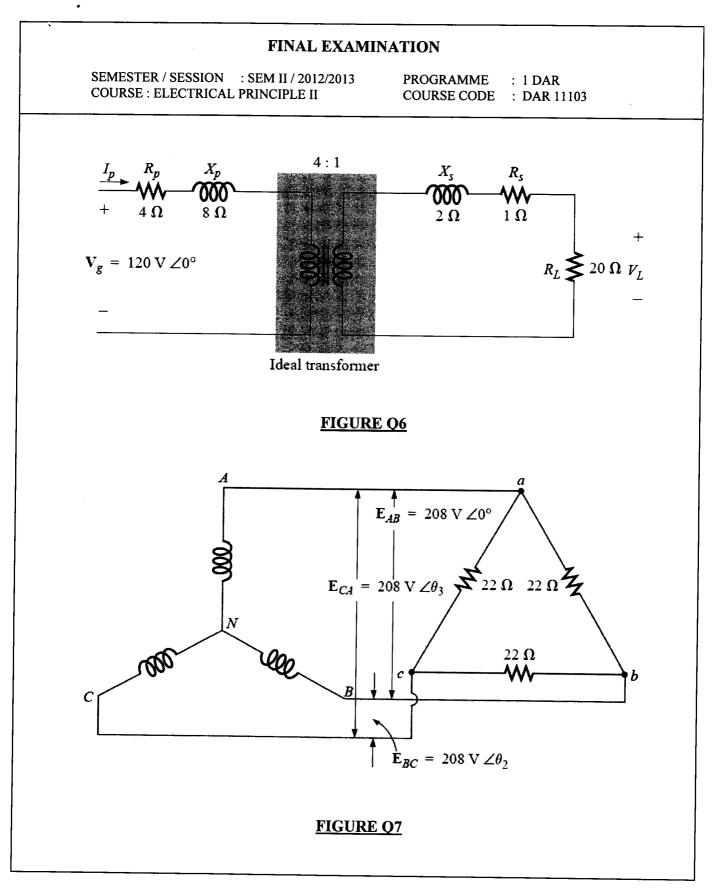
Q6	For the transformer of Figure Q6, determine:		
X	(a)	the equivalent resistance Re.	(2 marks)
	(b)	the equivalent reactance Xe.	(2 marks)
	(c)	the equivalent circuit reflected to the primary.	(6 marks)
	(d)	the primary current for I_P	(2 marks)
	(e)	the load voltage V_L .	(2 marks)
	(f)	the phasor diagram of the reflected primary circuit.	(2 marks)
	(g)	the new load voltage if we assume the transformer to be ideal with a 4 : 1 turns ratio Compare the result with that of part (e).	
			(4 marks)


The phase sequence for the Y- Δ system of Figure Q7 is *ABC*. Q7


(a)	Find the angles θ_2 and θ_3 for the specified phase sequence.	(2 marks)
(b)	Find the voltage across each phase impedance in phasor form.	(6 marks)
(c)	Draw the phasor diagram of the voltages found in part (b), and show that zero around the closed loop of the Δ load.	their sum is
		(2 marks)
(d)	Find the current through each phase impedance in phasor form.	(6 marks)
(e)	Find the magnitude of the line currents.	(2 marks)
(f)	Find the magnitude of the generator phase voltages.	(2 marks)


- END OF QUESTION -- - -


_


.

9