CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

COURSE NAME	:	ELECTRONICS
-------------	---	-------------

- COURSE CODE : DEE 2133
- PROGRAMME : 2 DEE/DET
- EXAMINATION DATE : OCTOBER 2012
- DURATION : 2½ HOURS
- INSTRUCTION : ANSWER FOUR (4) QUESTIONS ONLY.

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

CONFIDENTIAL

Q1 (a) Figure Q1(a) shows the characteristics of a diode. What type of material is used in this diode? Give a reason for your answer.

(4 marks)

- (b) Use the characteristic shown in Figure Q1(a) to determine the resistance of the diode when
 - (i) Forward voltage $V_{\rm F} = 0.65 \rm V$ (3 marks)
 - (ii) Forward current $I_{\rm F} = 4 \, {\rm mA}$ (3 marks)
- (c) Determine the output voltage V_0 and the diode current I_D for the circuit of Figure Q1(c).

(6 marks)

- (d) For the zener diode network of Figure Q1(d).
 - (i) Is the zener diode operating in the breakdown region? (3 marks)
 - (ii) Determine the load voltage V_L , series resistor voltage V_R , and diode zener current I_Z .

(6 marks)

Q2 ((a)	Consider	the circu	it in	Figure ()2(a).
· ·					0	• • /

(i)	What type of circuit is this?	(2 marks)
(ii)	What is the total peak secondary voltage?	(2 marks)
(iii)	Find the peak voltage across each half of the secondary.	(2 marks)
(iv)	Calculate the peak output voltage.	(3 marks)
(v)	Determine the DC output voltage.	(3 marks)

(b) If one of the diodes in Figure Q2(a) were open, what would happen to the output voltage.

(4 marks)

(c) Determine the output voltage waveform V_0 for the circuit in Figure Q2(b) using the second approximation.

(9 marks)

Q3 Referring to Figure Q3 :

(a) Determine the DC values of base voltage V_B , emitter voltage V_E and collector voltage V_C .

(10 marks)

· ·

、

	(b)	Calcu	(3 marks)				
	(c)	Draw	(3 marks)				
	(d)	What	(3 marks)				
	(e)	Calcu	(3 marks)				
	(f)	is the output voltage, v _{out} .	(3 marks)				
Q4	For the self-bias common-source amplifier of Figure Q4.						
	(a)						
		(i)	Gate voltage, V_{G}	(3 marks)			
		(ii)	Gate-source voltage, V_{GS}	(2 marks)			
		(iii)	Drain current, I _D	(2 marks)			
		(iv)	Drain voltage, V _D	(3 marks)			
	(b)	Solve	e for each of the following AC quantities:				
		(i)	Input impedance, Z _{in}	(3 marks)			
		(ii)	Load resistance, r _L	(2 marks)			
		(iii)	Transconductance when $V_{GS} = 0$, g_{mo}	(3 marks)			
		(iv)	Transconductance, g _m	(2 marks)			
		(v)	Voltage gain, A _V	(3 marks)			
		(vi)	Output voltage, v _{out}	(2 marks)			
Q5	(a)	(a) List two characteristics for each of the following classes of amplifiers.					
		(i)	Class A	(2 marks)			
		(ii)	Class B	(2 marks)			
		(iii)	Class C	(2 marks)			
	(b)	b) In Figure Q5(b), solve for the following:					
		(i)	Transistor Power Dissipation (P _{DO})	(6 marks)			
		(ii)	Voltage gain (A _V)	(3 marks)			
		(iii)	Peak-peak output voltage (vout)	(2 marks)			
		(iv)	AC load power (Pout)	(3 marks)			
		(v)	DC input power (P _{dc})	(3 marks)			
		(vi)	Stage Efficiency (n)	(2 marks)			

Q6 (a) Explain the purpose of an oscillator and what are the conditions required for a circuit to oscillate.

(9 marks)

(3 marks)

(3 marks)

(b) Referring to Figure Q6(b), calculate :

1.1

· •

- (i) Frequency of oscillation. (4 marks)
- (ii) Value of feedback fraction (B).
- (iii) Minimum value of voltage gain (A_V) for the oscillator to start. (3 marks)
- (c) The 555 timer of Figure Q6(c) has $R_1 = 20 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, and $C = 0.047 \mu\text{F}$.
 - (i) Calculate frequency of the output signal. (3 marks)
 - (ii) Compute the duty cycle.

4

SEMESTER / SESSION : SEMESTER I/ 2012/2013 COURSE : ELECTRONICS PROGRAMME : 2 DEE/DET COURSE CODE : DEE 2133

FIGURE Q5(b)

SEMESTER / SESSION : SEMESTER I/ 2012/2013 COURSE : ELECTRONICS PROGRAMME : 2 DEE/DET COURSE CODE : DEE 2133

