

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME	: ENGINEERING MATHEMATICS II	
COURSE CODE	: DAS 20403	
PROGRAMME	: 2 DAA	
EXAMINATION DATE	: MARCH 2013	
DURATION	: 3 HOURS	
INSTRUCTIONS	: ANSWER FIVE (5) QUEST ONLY.	IONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

Q1 (a) For each of the following, find F(s) or f(t) as indicated.

(i)
$$\mathscr{L} \left[2\sin t + \cos 2t \right]$$

(ii) $\mathscr{L} \left[te^{2t} \right]$
(iii) $\mathscr{L}^{-1} \left[\frac{s+4}{s^2+4s+8} \right]$

.

.

(14 marks)

(b)
Sketch the graph of the function
$$f(t) = \begin{cases} 1 & 0 \le t < 2\\ 2 & 2 \le t < 4\\ -1 & t \ge 4 \end{cases}$$

Describe these functions in terms of unit step functions.

(6 marks)

Q2 (a) (i) By using the convolution theorem, find

$$f(t) = \mathcal{L}^{-1} \left[\frac{3}{s^2 - 1} \right]$$
(ii) Evaluate $f(0)$ and $f(1)$

(ii) Evaluate f(0) and f(1).

(12 marks)

(b) By using the partial fraction method, find
$$\mathcal{L}^{-1}\left[\frac{2}{s(s^2+4)}\right]$$

(8 marks)

- Q3 (a) Given $y = A\cos 2x + B\sin 2x \frac{1}{5}\sin 3x$.
 - (i) Show that y is a general solution of the equation $y'' + 4y = \sin 3x$.
 - (ii) Find the particular solution if y = 1 and $y' = -\frac{1}{5}$ when x = 0.

(10 marks)

(b) Determine whether the differential equation $\frac{dy}{dx} = \frac{xy + y^2}{x^2}$ is homogeneous. Thus, solve the equation. (Hint: y = xy)

(10 marks)

Q4 (a) Consider an animal population P(t) that is modelled by the equation

$$\frac{dP}{dt} = 0.004P(P-150).$$

Find P(t), if P(0) = 200.

€/

(10 marks)

- (b) A body at a temperature of 50° F is placed outdoors where the temperature is 100° F. If after 5 minutes the temperature of the body is 60° F, find
 - (i) how long it will take the body to reach a temperature of 75° F.
 - (ii) the temperature of the body after 20 minutes.

The Newton's Law of Cooling equation for this problem is

$$\frac{dT}{dt} + kT = 100k..$$

where t is the variable for temperature in ${}^{\circ}F$, t is the variable for time in minutes and k is a constant of proportionality.

(10 marks)

Q5 (a) Find an integating factor for y' - 2xy = x.

,

(8 marks)

- (b) Given $y'' y' 2y = e^{3x}$. By using the method of variation of parameters, answer the following questions.
 - (i) Find the characteristic equation, y_h of the given equation if y'' y' 2y = 0.
 - (ii) By using $y_p = v_1 e^{-x} + v_2 e^{2x}$ and $\phi(x) = e^{3x}$, solve the simultaneous equation

$$v'_{1}(e^{-x}) + v'_{2}(e^{2x}) = 0$$

$$v'_{1}(-e^{-x}) + v'_{2}(2e^{2x}) = e^{3x}.$$

to determine v_1 and v_2 . Substitute this result into y_p .

(iii) Finally, write the general solution as $y = y_h + y_p$.

(12 marks)

Q6 (a) Given the initial value problem as follows;

$$x'' + 4x' + 4x = 1$$
, $x(0) = x'(0) = 0$.

(i) Show that the laplace transform for the given problem is

$$X(s)=\frac{1}{s(s+2)^2}.$$

(ii) Then, use partial fractions to prove that

$$X(s) = \frac{\binom{1}{4}}{s} + \frac{\binom{-1}{4}}{(s+2)} + \frac{\binom{-1}{2}}{(s+2)^2}.$$

(iii) Finally, solve the given problem.

(10 marks)

(b) A tank which initially holds 100 litres of a solution containing 90% of water and 10% of salt is drawn off at the rate of 5 litres/min. At the same time the tank is refilled at the rate of 4 litres/min with solution that contains 50% of water and 50% of salt. Assuming that the mixture is kept uniform. How much saltis present

(i) at any time t > 0?
(ii) at the end of 10 min.

(10 marks)

Q7 (a) Solve the exact equation below:

$$(y\sin x + xy\cos x)\,dx + (x\sin x + 5)\,dy = 0\,.$$

(11 marks)

(b) Given the R-L circuit model as

$$L\frac{dI(t)}{dt} + RI(t) = E(t),$$

where the circuit has inductance L = 0.5 henry, resistance R = 10 ohms, electromotive force $E(t) = 3e^{2t}$ and I(t) is the current flowing in the circuit. The initial current is 6 Amperes.

(i) Determine the initial condition for the circuit.

(ii) Find the current flowing in the circuit for all time

(9 marks)

4

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 **COURSE : ENGINEERING MATHEMATICS II**

: 2 DAA PROGRAMME COURSE CODE : DAS 20403

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Characteristic equation: $am^2 + bm + c = 0$.				
Case	The roots of characteristic equation	General solution		
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$		
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$		
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$		

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})$
$Ce^{\alpha x}$	$x^{r}(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x'(P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{\alpha x}$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)e^{\alpha x}$
$\frac{1}{\beta(x)}\int \cos\beta x$	$x' (B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x + B_0) \cos \beta x +$
$\int_{-\infty}^{\Gamma_n(x)} \sin \beta x$	$x^{r}(C_{n}x^{n}+C_{n-1}x^{n-1}+\cdots+C_{1}x+C_{0})\sin\beta x$
$\int \cos \beta x$	$x^{r}e^{\alpha x}(P\cos\beta x+Q\sin\beta x)$
$\sin \beta x$	
$\frac{1}{P(x)e^{\alpha x}}\int \cos\beta x$	$x^r (B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x + B_0) e^{\alpha x} \cos \beta x +$
$\int \sin \beta x$	$x^{r}(C_{n}x^{n}+C_{n-1}x^{n-1}+\cdots+C_{1}x+C_{0})e^{\alpha x}\sin\beta x$

Note : r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 COURSE : ENGINEERING MATHEMATICS II PROGRAMME : 2 DAA COURSE CODE : DAS 20403

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_h = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y = uy_1 + vy_2,$$

where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
, $v = \int \frac{y_1 f(x)}{aW} dx + B$ and $W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$.

Laplace Transform

.

$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt = F(s)$				
f(t)	F(s)	f(t)	F(s)	
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$	
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$	
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}	
cosat	$\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$	
sinh at	$\frac{a}{s^2-a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s) \cdot G(s)$	
cosh at	$\frac{s}{s^2-a^2}$	<i>y</i> (<i>t</i>)	Y(s)	
$t^n, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s) - y(0)	
$e^{at}f(t)$	F(s-a)	y"(t)	$s^{2}Y(s) - sy(0) - y'(0)$	
$t^n f(t),$ n = 1, 2, 3,	$(-1)^n \frac{d^n}{ds^n} F(s)$			