CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

COURSE NAME

- : HYDROLOGY
- COURSE CODE : DAC 20902
- PROGRAMME : 2 DAA / DAC
- EXAMINATION DATE : OCTOBER 2012
- DURATION : 2 ¹/₂ HOURS
- INSTRUCTIONS
- : ANSWER FOUR (4) QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

Q1 (a) What do you understand about water balance equation.

2.1

(6 marks)

(b) List 4 (FOUR) parameters in hydrological data collection.

(4 marks)

(c) Refer **Table Q1(c)**, a reservoir has the following inflows and outflows for the three months of the year. If the storage at the beginning of June is 62 m^3 , determine the storage at the end of August.

Table Q1(c) : Data of inflow and outflow

Month	June	July	August
Inflow (cm ³)	3.45 X 10 ⁶	5.56 X 10 ⁶	8.89 X 10 ⁶
Outflow (cm ³)	6.67 X 10 ⁶	7.88 X 10 ⁶	5.67 X 10 ⁶

(5 marks)

(d) A catchment of an area of 19,500 km² receives an annual rainfall of 66 cm/annum. Discharge from the catchment is 161 m³/s. Determine the annual evaporation value (ET) for the catchment.

(10 marks)

- Q2 (a) Explain briefly about precipitation types as below:
 - i) Convective precipitation
 - ii) Orographic precipitation
 - iii) Cyclonic precipitation

(6 marks)

(b) List 4 (FOUR) parameters of precipitation measurement.

(4 marks)

٠.

(c) Refer **Table Q2(c)**, determine cumulative rainfall (cm) and rainfall intensity (cm/hour).

		Table	Q2(c	e) : Ra	infall	l data			(10 m	arks)
Time	0	10	20	30	40	50 38	60 40	70 42	80 43	
Rainfall (mm)	17	44	20	52			·			

(15 marks)

Q3 (a) Explain the procedures of plotting Intensity Duration Frequency (IDF) curve.

(10 marks)

(b) Refer **Table Q3(b)**, determine Intensity Duration Frequency (IDF) for 20-year and 10-year frequencies.

		10	15 min	20 min	30 min	60 min
No	5 min	10 min		0.86	1.48	0.77
1	0.33	0.62	0.89		0.82	0.80
2	0.37	0.60	0.76	1.07		
	0.31	0.58	0.73	0.77	1.29	0.83
3		0.50	0.72	0.97	0.78	0.88
4	0.40			0.77	1.26	0.91
5	0.38	0.63	0.79		0.78	1.48
6	0.35	0.66	0.63	0.91		
	0.36	0.50	0.72	0.70	1.06	1.92
7			0.83	0.86	0.78	2.15
8	0.33	0.60	0.85	0.00		

Table Q3(b) : Precipitation data

(15 marks)

Q4 (a) Give 3 (THREE) characteristics of stage gauge staff.

(6 marks)

(b) List 4 (FOUR) methods of streamflow determination.

(4 marks)

(c) Data of stream-gauging at a gauging site are given in Table Q4(c). The rating equation of the current meter is $v = 0.55 N_s + 0.05 m/s$. Calculate the discharge in the stream.

Distance from left of bank (m)	0	3	6	9	12	15	18	21
Depth (m)	0	1.4	3.1	6.2	6.3	3.0	1.3	0
Revolutions at 0.6d	0	44	66	122	124	64	42	0
Duration of observation (s)	120	120	120	120	120	120	120	120

Table Q4(c) : Data of stream-gauging

(15 marks)

Q5 (a) What are hydrograph components.

(4 marks)

(b) Why we need Unit Hydrograph (UH).

(6 marks)

Refer Table Q5(c), the daily streamflow data for a particular catchment having (c) an area of 7000 km². Separate the baseflow using the intersection method $(N = 0.8A^{0.2})$. Determine total of baseflow and direct flow method.

		Table	23(0)	. Dany	Sucan		Jala			
Time (days)	1	2	3	4	5	6	7	8	9	10
Total Flow (m ³ /s)	500	650	800	1100	1200	900	800	600	550	550

Table O5(c) : Daily streamflow data

(15 marks)

Q6 (a) What is the meaning of flood routing.

1. 1. 1

(3marks)

Explain briefly the functions of hydrologic routing. (b)

(6 marks)

· · · ·

.....

(c) Route the inflow hydrograph tabulated in the **Table Q6(c)** which x = 0.2 and K = 20 hours where the inflow equals to outflow for the first day.

Table Q6(c) : Inflow hydrograph

Time (hour)	12	24	36	48	60
Inflow (ft ³ /s)	100	250	500	300	150

(16 marks)

APPENDIX 1

FINAL EXAMINATION					
SEMESTER / SESSION : SEM I 2012 / 2013 COURSE : HYDROLOGY	PROGRAMME : 2 DFA & DFT COURSE CODE : DAC 20902				
EQUATIONS					
$\Delta Q_1 = y_i \left(\frac{W_i}{2} + \frac{W_{i+1}}{2}\right) v_i$	$O_2 = C_o I_2 + C_1 I_1 + C_2 O_1$				
$\overline{W_1} = \frac{\left[W_1 + \frac{W_2}{2}\right]^2}{2W_1}$	$C_{0} = \frac{0.5 \Delta t - Kx}{K (1 - x) + 0.5 \Delta t}$				
$\overline{W}_{N} = \frac{\left[W_{N} + \frac{W_{N-1}}{2}\right]^{2}}{2W_{N}}$	$C_1 = \frac{0.5\Delta t + Kx}{K(1-x) + 0.5\Delta t}$				
$S_{2} = S_{1} + \Delta t \left[\frac{I_{1} + I_{2}}{2} - \frac{O_{1} + O_{2}}{2} \right]$	$C_2 = \frac{K(1-x) - 0.5\Delta t}{K(1-x) + 0.5\Delta t}$				
$T=\frac{n+1}{m}$					

• . . .

• • •